

Selected Biopolymers gain Competitiveness

 Nov. 2013
 Open Innovation Forum Moscow

Dr. Manfred Kircher Chairman Advisory Board CLIB²⁰²¹

Email: kircher@clib2021.de

Feedstock make 40 - 50 % of Chemical Production Cost

Bio-Carbon still more costly

Shale Gas reduces Cost of Fossil Ethylen

Bio-Ethylene not cost-competitive

MIT Technical Review; Kevin Bullis; Shale gas will fuel a US manufacturing boom; 9.1.2013

- Chemicals respond to Shale Gas Availability

Carbon-Source	Fossil	Bio	
Methane	1		23.5.2013 CLIB Forum on Shalegas K.Rübbert; Dechema (modified)
Ethylene	T		
Propylene		1	2-Butene + Ethylene
Funct. C ₃ Molecules		1,3 propandiole	
Butadiene		1	ω-amino lauric acid
Funct. C ₄ Molecu	les	1	succinic acid
Aromatics		1	(lignin)

CLIB-Consortium develops New-to-the-World Biochemical

An Alternative Raw Material for Polyamide 12

Evonik is operating a pilot plant for bio-based ω-amino lauric acid

Essen, July 30, 2013

The biobased ω -amino-lauric acid is an alternative to petroleum-based laurin lactam (LL). ALS replaces the monomer LL in the manufacture of sustainable high-performance plastics and yields an identical compound polyamide 12 (PA 12).

Over the long run, the entirely new process has the potential to complement the butadiene-based production of PA12.

CLIB2021 - Overview

highlighted segments show international members

100 Members

40 % SME

30 % international

60 bn EUR Sales

200 mio EUR Bio-R&D Budget

Funded and supported by:

Ministry of Innovation, Science and Research of the German State of North Rhine-Westphalia

