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The sequencing market has increased steadily over the last few years, with dif-
ferent approaches to read DNA information prone to different types of errors.
Multiple studies demonstrated the impact of sequencing errors on different
applications of next-generation sequencing (NGS), making error correction a
fundamental initial step. Different methods in the literature use different
approaches and fit different types of problems. We analyzed 50 methods divided
into five main approaches (k-spectrum, suffix arrays, multiple-sequence align-
ment, read clustering, and probabilistic models). They are not published as a part
of a suite (stand-alone), and target raw, unprocessed data without an existing ref-
erence genome (de novo). These correctors handle one or more sequencing tech-
nologies using the same or different approaches. They face general challenges
(sometimes with specific traits for specific technologies) such as repetitive
regions, uncalled bases, and ploidy. Even assessing their performance is a chal-
lenge in itself because of the approach taken by various authors, the unknown
factor (de novo), and the behavior of the third-party tools employed in the bench-
marks. This study aims to help the researcher in the field to advance the field
of error correction, the educator to have a brief but comprehensive companion,
and the bioinformatician to choose the right tool for the right job. © 2016 John Wiley

& Sons, Ltd
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INTRODUCTION

Next-generation sequencing (NGS) appeared in
2005, and since then, its market has increased

steadily, with various technologies being developed.
NGS has evolved faster than Moore’s law in com-
puter science, allowing us to sequence and assemble
large genomes like the Loblolly Pine with 22 Gb1 or
the Norway Spruce with 20 Gb2 for a reasonable
cost in time and resources. However, there are many
other species (e.g., the Amoeba Dubia with a 670 Gb
estimated genome size,3 200× human genome’s size)
that are still challenging to assemble. The errors
introduced by the sequencing process are one of the
main reasons NGS data has to be corrected before
any further use. Multiple studies have demonstrated
the impact of sequencing errors on different applica-
tions of NGS, making error correction a fundamental
initial step.4–7 There are many error correction tools
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in the literature that cope with different technologies
and error types. However, to our knowledge, there is
no complete, objective review of the modern methods
that could help researchers, educators, and users at
the same time. There are benchmarks summarizing a
number of methods, but there is none extensively
focusing on the implementation, features, and the
overall domain (including challenges). Our work
synthesizes 50 de novo stand-alone error-correction
software. The Supporting Information includes the
description of the approach used to search the litera-
ture along with the inclusion criteria.

The article continues with the motivation (also
containing a brief description of the sequencing tech-
nologies and various error sources) followed by a
presentation of the correctors. Next, the ‘Discussion’
section presents some important points related to
challenges faced by correctors and how their perfor-
mance is assessed in the literature. Finally, we con-
clude our paper with some general remarks about
the current state of the field of the NGS error
correction.

We also introduce the concept of gradual
recommendations. The recommendations are
gradual because they progress with the text, and each
one is based on the previous information. The
‘Error Correction Software’ section includes general
recommendations based on the features presented in
Table 2. The recommendations from the ‘Error cor-
rection in real projects’ section use the previous ones
as a foundation and extend the suggestions now that
the reader has read about some real-world examples.
The subsection ‘Recommendations’ from the section
‘Challenges’ focuses on proposals, taking into
account the challenges that the correctors must
address. Finally, the subsection ‘Recommendations’
from the section ‘Testing’ offers advice (now that the
reader knows the methods, where these have been
used, and what the challenges are) based on real-
world performances using different metrics.

MOTIVATION

The market size of NGS was estimated at $2.5 billion
in 2014.8 Furthermore, Illumina (San Diego, CA)
managed to lower the cost of sequencing with its
HiSEQ X to ~$1000 (in 2015) for the human
genome.9,10 This price is quite an achievement when
considering that not so long ago (2000–2003), the
draft of the human genome costed about $300 mil-
lion.11 Overall, NGS has become widely used by the
medical and scientific community not only for basic
biological research but also in numerous applied

fields such as medical diagnosis, forensic biology,
virology, and biotechnology. These are just a few
clear proofs of the increasing importance of NGS in
the world (not mentioning the increase in size of the
reads, faster sequencing machines, and improved
quality of the generated data). This quickly evolving
and advancing environment facilitated the develop-
ment of a myriad of methods with different applica-
tions for the NGS data. One of the most important
steps (usually the first) is the correction of errors,
yielding many benefits for the ulterior ones as
demonstrated in the subsection ‘Benefits of Error
Correction’. Our readers may assume that an easy
way to deal with the errors is to increase the cover-
age (i.e., add more sequencing data). While the
increase in coverage indeed helps the correction proc-
ess, there are still many challenges that the correctors
must address (especially in de novo sequencing). Fur-
thermore, an increase in coverage comes with an
increase in costs, sequencing/processing time, and
storage requirements.

After an extensive literature search (see
approach and details in the Supporting Information),
we selected 50 correctors. As one may expect, there
is a tremendous amount of information scattered
across these papers. We strive to summarize the del-
uge of information for an audience from many fields
such as bioinformatics, biology, chemistry, computer
science, and others with an interest in NGS. Our aim
is to help the researcher in the field of error correc-
tion by grouping the information and synthesizing
the existing work. Secondly, our work also comes in
handy for educators because it summarizes and pre-
sents the key points of the information found in the
selected articles. We tried to present the information
gradually, without an abrupt and direct presentation
of the correctors (our readers are not expected to
have a priori, in depth knowledge of the domain).
Finally, the actual users of the correction software
will find Table 5 useful when searching for the right
tool for their specific requirements. The Supporting
Information contains an additional table with all the
testing results from the reviewed articles.

Sequencing Technologies
DNA sequencing was started in 1977 with the publi-
cation of the Sanger method.12 This method uses a
large amount of DNA as a template for each read
and needs an independent polymerase chain reaction
(PCR) for each possible nucleotide. The PCRs are
produced in the presence of four deoxynucleotides
and a single dideoxynucleotide, which stops the elon-
gation. Once synthesized, the truncated DNAs are
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resolved by electrophoresis. During the synthesis
reaction, a radioactive nucleotide (usually dATP -
Deoxyadenosine triphosphate) that simplifies the
determination of the sequence is incorporated into
the elongating strands.

NGS methods are more efficient than Sanger
sequencing in two different ways. On the one hand,
in Sanger sequencing, only 1 Kb (maximum) can be
sequenced in a single experiment, whereas NGS is
parallel by definition, allowing a throughput of hun-
dreds/thousands of gigabases per run. Note that in
this article, Kb, Mb, and Gb are the acronyms for
kilobases, megabases, and gigabases, respectively. On
the other hand, the chemical reactions are usually
combined with the signal detection in some versions
of NGS, whereas in Sanger sequencing, they are two
separate processes. Factors like the reduction of time,
manpower, and reagents in NGS lead to lower costs,
making it possible to do more repeats than with the
Sanger method. This results in a more accurate, relia-
ble sequencing and better coverage. In NGS, the first
step is the DNA cleavage into short segments
(or reads) with lengths depending on the particular
sequencer used.

In this review, we focus on NGS technologies
based on sequencing by synthesis (SBS), using DNA
polymerase/ligase enzymes to generate a complemen-
tary strand. As defined by,13 Pacific Biosciences is the
only SBS approach that has a real-time sequencing
strategy. All the others are synchronously controlled
as we shall see in the following subsections where we
present a brief but comprehensive description of
the sequencing chemistries of the five aforementioned
technologies. Fuller et al. also divide the methods
in single molecule-based (Pacific Biosciences and
Oxford Nanopore - not specified in Ref 13) and
ensemble-based (Illumina, Roche 454, Ion Torrent -
not specified in Ref 13 and SOLiD). The former
sequences single molecules of DNA as they are
obtained from the source, while the latter relies on
the amplification (cloning) of DNA segments before
starting the actual sequencing process.

The sequencing technologies explicitly sup-
ported by the methods from our review (ordered by
the number of correctors supporting them) are Illu-
mina, Roche 454, Pacific Biosciences, Ion Torrent,
Oxford Nanopore, and SOLiD. Note that we placed
strong emphasis on the actual DNA ‘reading’ step
because this is the main step where sequencing errors
are generated. For further and detailed information
regarding the platforms and the entire sequencing
process, please check the ‘Further Reading’
section where we listed some resources that cover the
themes in a more in depth manner. Additionally, the

interested reader can find more details about the
chemistry of SBS sequencing in.13

Table 1 offers some information about a num-
ber of well-known sequencers.

Illumina/Solexa
The Illumina reads receive adapters at their ends.
These adapters attach themselves to their respective
complementary adapters, with the latter hooked on a
board with many variants of (complementary) adap-
ters placed on a solid surface. Next, a segment is
cloned by PCR amplification, creating a spot with
many copies of the same initial read. The last step
before the actual sequencing splits each read in the
two complementary strands. Once the board contains
only the single-stranded reads held in place by adap-
ters, fluorescent-labeled, terminated nucleotides and
DNA polymerase are added as a mix on the board
(Figure 1, Step 1). Fluorescent bases produce unique
colors for each matching base. A polymerase is a pro-
tein that rebuilds the double helix starting from a
single-stranded template. It adds the complementary
base for each of the templates’ composing nucleo-
tides. Due to the terminated property of the free
nucleotides added earlier in the mix, the polymerase
attach to one and only one base per cycle (Figure 1,
Step 2). The sequencer registers the color of the latest
incorporated nucleotide for each read by taking a
snapshot of the board (Figure 1, Step 3). The process
continues with the elimination of the terminator with
the fluorescent label and the starting of a new cycle.
The number of cycles gives the length of the read,
with all reads normally having the same length.
Using the snapshots, the sequencer determines the
nucleotides composing a read (Figure 1, Step 4).

Roche 454
As in Illumina’s method, the 454 reads pass through
a PCR amplification step and bind to adapters for
which the complementaries lay hooked on a bead.
Roche 454 uses the same fluorescent signaling to
read the attached nucleotides. Therefore, the addition
of each nucleotide releases a light signal. The main
difference consists in the approach taken at each
cycle. Instead of adding a solution containing all four
fluorescent and terminated bases, the sequencer adds
the solution with one and only one type of base with-
out the terminator. As a result, a variable number of
bases can bind on a read at each cycle. The intensity
of the signal represents the number of nucleotides
added at each cycle. Roche tries to reconstruct entire
homopolymers (runs of identical bases) at each cycle
to save time. As an example, at Step 2 from Figure 1,
the sequencer adds two cytosines (instead of one like
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in Illumina’s case) in the depicted cycle. Generally,
the sequences generated by 454 instruments have dif-
ferent lengths because different numbers of bases are
incorporated at each cycle.

Ion Torrent/Personal Genome
Machine (PGM)
Unlike Illumina and 454, Ion Torrent sequencing is
not based on the detection of optical signals. Instead,
it takes advantage of the release of protons (H+) fol-
lowing the addition of deoxynucleotides to the DNA
strands by the DNA polymerases. The fluctuation in
the pH of the solution can be easily measured and,
using its level of acidity, the instrument can deter-
mine how many bases have been attached in each
cycle. The bases are identified as in the case of 454.

Applied Biosystems Instruments (ABI)
Sequencing by Oligonucleotide Ligation
and Detection (SOLiD)
In this case, the reads are used to prepare clonal bead
populations.36 Instead of binding one nucleotide or a
homopolymer per cycle (like the previously described
sequencers), ABI uses fluorescent-labeled dinucleotide
probes. Instead of individual bases, SOLiD encodes
the transition between bases. At each ligation step,
four DNA primers attached to different fluorescent
dyes (out of the 16 DNA possibilities) are added to
the reads that match the complementary DNA pri-
mers on the bead. Next, the fluorescent part is read
and afterwards cleaved from the probe. The
sequencer repeats this cycle of ligation/reading/cleav-
age as many times as needed in order to obtain a
read of a certain length. In each cycle, two positions

of every five are determined. Once the sequencer has
executed enough cycles, it resets the template with
the primer going one position back by removing one
base of the primer. In order to determine the com-
plete sequence of the read, SOLiD sequencers per-
form this resetting step five times. As the primer is
moved one base back, the sequencer reads each base
twice, improving the robustness.

Pacific Biosciences
Pacific Biosciences uses a single-molecule real-time
(SMRT) sequencing approach.37 It employs the same
fluorescent labeling as the previous technologies, but
instead of executing cycles of incorporating nucleo-
tides and taking snapshots, it detects the signals in
real time as they are emitted when the incorporations
occur (using a zero-mode waveguide system38). Like
Illumina, Pacific Biosciences uses all four bases at the
same time floating in the mix. It has a bead with
many wells that have a diameter between 70 and
100 nm, lower than the wavelength of the visible
light. Due to the physical properties of the fluorescent
additives, light is needed in order to make the fluores-
cent dye glow. Owing to this requirement, the bot-
toms of the wells are illuminated, but due to their
very small diameter, the light intensity decays expo-
nentially along the wells, creating a shadow zone.
The wells have a DNA polymerase attached to their
bottoms (the illuminated zone) that rebuilds the
DNA complementary strand of the DNA segments
floating in the mix. Each time a nucleotide is added,
the fluorescent dye is cleaved. As a result, two con-
secutive signals do not overlap because the sensors
only record the noncleaved fluorescent dyes as the

FIGURE 1 | Main sequencing steps for Illumina.
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previous ones move up in the well into the shadow
zone. This approach does not require cycles because
each polymerase works independently of the others.

Oxford Nanopore
As its name suggests, this sequencing technology uses
very small nanopores (allowing one nucleotide at a
time) to read the DNA sequences.39 The idea of using
nanopores to decipher the DNA’s code has been
around since 1989, but it was not viable until 2010
when a DNA polymerase capable of attracting the
DNA to the nanopore was discovered.40 The main
components of this technology are the protein nano-
pores resembling those found on the cellular mem-
brane. These structures are inserted into an electrical-
resistant artificial membrane onto which an electrical
potential is applied. Owing to the flowing of the
potential only through the aperture of the nanopore,
any molecule passing through generates a variation
in the current, resulting in a specific signature. Using
the previously described processes, the sequencer is
able to decode the DNA (or RNA or proteins). In
order to get the DNA segments to pass through the
hole, the segments are mixed with copies of a carrier
enzyme. These carrier enzymes attach to the DNA
strands. They are pulled to a nanopore where the
DNA is unzipped (if necessary), and the resulting sin-
gle strand passes through the aperture, producing
variations in the potential. One interesting feature is
the capability to sequence both strands of the DNA
segment using the same nanopore, generating the so-
called 2D reads (50!30 and its complementary 30!50

strands linked together). In order to do this, the
DNA segment receives a hairpin structure at the end
to keep the two templates together after unzipping.
This way, once the first strand has passed through
the hole, the complementary one is pulled through.

Errors in NGS
There are four types of basic sequencing errors: inser-
tions, deletions, mismatches, and uncalled/unknown
bases (or Ns).41 The differences in the sequencing
process of the aforementioned technologies lead to
different types of errors. Table 1 lists the predomi-
nant error type for each NGS technology. This con-
stitutes an important factor when choosing the
values of the parameters for the correctors. Mis-
matches are prevalent in Illumina and SOLiD while
indels constitute the main error type in Roche
454, Ion Torrent, Pacific Biosciences, and Oxford
Nanopore.5,42–46 More details about the types of
errors in the aforementioned technologies and practi-
cal experiments appear in.5,44,47 The ensemble-based

methods are prone to pre-sequencing errors (gener-
ated by the library preparation method and the
choice of primers),48 unless PCR-free kits are
used.65–67

Owing to its one nucleotide incorporation per
cycle, the Illumina sequencers avoid insertions and
deletions almost entirely.5,44 Sleep et al.49 describe
the substitution errors for various Illumina sequen-
cers. They found that the percentage of error
increases toward the 30 end of the reads7,50 because
of a phenomenon called dephasing/phasing. It is
caused by the fact that an error generated at one
cycle affects the next cycles and hence the increased
number of errors toward the end.52 The same phe-
nomenon is the main cause for the limited length of
the reads in all ensemble-based SBS methods where
some strands in a group of clones may fall behind,
resulting in a desynchronization of the emissions of
each clone in a group.13 Another important cause of
sequencing errors is the cross-talk arising due to the
overlap of dye emission frequencies. The Illumina
Genome Analyzer® uses a red laser to read A and C
and a green laser to read G and T. As a result,
the Illumina Genome Analyzer® produces many
substitution G ! T and C ! A.7,54 Related to the
previous cause for the Illumina MiSeq® sequencer,
Schirmer et al. determined that A $ C substitution
errors appeared more often than G $ T (red laser/fil-
tering problem). They also studied the relation
between the position of bases in a read and the qual-
ity scores for Illumina MiSeq® data. Generally, errors
occurring between the start and the middle of the
reads had much higher quality scores than those in
the second half of a read. Furthermore, the authors
found several 3-mer motifs usually preceding substi-
tutions and indels, resulting from the selection of pri-
mers and library design. The estimated error rate for
Illumina sequencers is between 1 and 2.5%.7,55,56

Following the brief description of the Roche
4540s sequencing approach, it becomes clear that,
analogous to Illumina, some nucleotides are misclas-
sified. Furthermore, the exact length of the homopo-
lymers cannot exactly be determined each time,43,57

with the sequencer introducing:

• insertions (when recorded homopolymers are
longer than real ones) and

• deletions (when recorded homopolymers are
shorter than the real ones)

Luo et al.58 demonstrate the relationship between
homopolymers and their length, where pyrosequen-
cing (Roche 454 FLX Titanium®, Basel, Zurich) loses
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accuracy as the length of the homopolymer increases.
Gilles et al.59 found a chemistry-related source of
errors termed the CAFIE effect (carry forward and
incomplete extension). Carry forward is generated by
the inability to clean a well fully (unincorporated
nucleotides are not removed) after a cycle. As a
result, during the next base flow, nucleotides are
prematurely incorporated to specific sequence combi-
nations, hence generating noise. The incomplete
extension effect appears when some DNA strands on
a bead miss the nucleotides incorporation at a certain
flow cycle. They must wait for the next flow cycles,
but they are already out-of-phase with the other
strands. The Roche 454 GS Junior® has an indel
error rate of 0.38 per 100 bases.6 Gilles et al. report
a mean error rate of 1.07%.

The Ion Torrent sequencing approach has
indels as the dominant error type.46 Bragg et al. also
observe that insertions appear more often than dele-
tions and that (in contrast to Illumina) indels are an
order of magnitude more likely to be generated. Due
to the similarity in the sequencing idea between Ion
Torrent and 454, it becomes clear that homopoly-
mers pose a problem for this technology too.6 The
sequencing accuracy of the reads steadily decreased
from their start to their end.6,46 Loman
et al. observed that in comparison to 454 GS
Junior®, the Ion Torrent PGM® is less accurate when
dealing with homopolymers (accuracy of 60% for
homopolymers with six or more bases). Furthermore,
for homopolymers shorter than two bases, insertion
is the main error type, but the situation changes with
the increase in length of the homopolymers where
deletions become the norm.46 For long homopoly-
mers (more than 14 bases), Ion Torrent does not gen-
erate reads at all.60 The same study reinforces the
problem with homopolymers by mentioning the ina-
bility to predict the correct number of bases for
homopolymers longer than eight bases. The observed
error rate is 1.78% (all types of errors) in Ref 60,
between 1.68 and 4.86% (all types of errors depend-
ing on the used kit) with 96–97% of them being
homopolymers errors in Ref 46 and 1.5 indels per
100 bases in Ref 6.

Pacific Biosciences generates longer reads than
other sequencing technologies, but the error rate is
still high.61 The errors seem to be uniformly distribu-
ted and independent of the sequence context.62 The
same authors and those from Ref 63 suggest that
Pacific Biosciences is more susceptible to insertions
than to deletions. Currently, the error rate for Pacific
Biosciences is between 15% and 20%.63,64

Oxford Nanopore is an emergent technology,
generating long reads with a small and portable

device (the MinION®65). It is still in development,
but there are some publications studying the sequen-
cing results.66,67 The accuracy is still low, with inser-
tions as the predominant type of error.42 Goodwin et
al. report a very high error rate, between 25
and 40%.

GC Content
It is widely accepted that the extreme base composi-
tion of some regions poses a problem for sequencing
technologies.5 For example, the GC content (rich and
poor regions) is often a source of bias and uneven-
ness in coverage. The coverage is an extremely
important aspect of the NGS as it is needed to proc-
ess the output data successfully as we discuss in the
‘Low-Coverage Regions and Uniformity’ section. The
problem is even more important as the bias can be
introduced during the library preparation step, before
the actual sequencing process.5 This holds true for
ensemble-based SBS technologies where the amplifi-
cation step (emulsion PCR or bridge amplification)
generates (much) lower coverage on the very GC-rich
and GC-poor regions.5 Quail et al. state that this
problem appears for Ion Torrent due to its double
amplification step (library and template). They mana-
ged to lower the bias by using the Kapa HiFi enzyme
for the fragment amplification. Furthermore, the bias
can be eliminated by using PCR-free preparation kits
for Illumina,49 Ion Torrent,50 and 454.51

Ross et al.5 provide an excellent measurement
of the bias caused by the GC regions. They use the
genomes of four species as the correct and trusted
source and compare it with the data generated by
Illumina MiSeq®, Ion Torrent PGM®, Pacific Bios-
ciences RS®, and Complete Genomics®. Figures 3
and 4 from the aforementioned article depict the
strong variation introduced by these GC-extreme
zones. Pacific Biosciences sequencing seems to obtain
better sequencing results because of its lack of ampli-
fication before sequencing,5 but bias still plagues this
technology (slight but noticeable) when faced with
genomes with GC-rich regions like Staphylococcus
aureus.60 The Pacific Biosciences RS®, like the Illu-
mina MiSeq® and Ion Torrent PGM®, is also suscepti-
ble to dissociation of fragment ends in adapter
ligation.5 High and low GC content seems to influence
Oxford Nanopore too as the coverage is more varia-
ble than in zones with a 20–60% GC content. As a
result, this extreme GC content partially motivates the
lack of coverage for certain regions in the genome.68

Benefits of Error Correction
The most important application of error correction is
in the field of genome assembly where the input data
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is corrected before the actual assembly. Many error
correction publications include tests with assemblers
and real data. Various assembly metrics demonstrate
the need of error correction to generate meaningful
assembly output (see subsection ‘Assembly’ from the
section ‘Testing’).69

A second application is re-sequencing, where
multiple samples from an organism with an already-
known genome are sequenced. The main purpose of
this operation is to compare the variability among
different genomes from the same species. Another
purpose is the comparison of datasets from the same
organism sequenced using different technologies or
sample preparation procedures. Re-sequencing indi-
rectly uses the same metrics like gain and accuracy,
which compare the corrected reads against a refer-
ence genome.4,70

Thirdly, the authors in Refs 71–74 stress the
impact of error correction on short reads aligners.
Errors are dangerous because they can cause an
aligner to miss the real locus of a read in the refer-
ence genome. Furthermore, in the case of repetitive
regions, a faulty read from a unique path in the
genome can end up in multiple locations provided it
matches the repetitive region due to the errors.

Another affected application of NGS is the
detection of single nucleotide polymorphisms (SNPs).
Normally, an aligner maps the reads against a refer-
ence genome to search for variants, but the errors in
the reads can be misleading, increasing the total num-
ber of differences.7 Furthermore, as the distribution
of SNPs is not uniform, a region can have a high den-
sity of SNPs. Errors have a higher impact in these
areas.

Additionally, there are other steps following
sequencing that can benefit from error correction
(e.g., identification of copy number variation or chro-
mosomal rearrangement).4 In conclusion, almost any
possible operation on NGS data benefits from the
corrected input. The ‘Error correction in real pro-
jects’ section lists many real studies that used the cor-
rectors included in this review.

ERROR CORRECTION SOFTWARE

The following subsections deal with the correctors
included in this review. The exact sequencing project
type (RNA/DNA; Whole Genome Sequencing/ChIP-
seq/etc) destined for a corrector is not specified in
most papers. The authors normally work with DNA
reads. The benchmarks performed in the same arti-
cles contain only datasets from whole genome
sequencing (WGS) projects. One exception is

PAGANtec,75 which works with transcriptome
assemblies.

Technology Support
Illumina is the market leader, with a 70% market
share.8 The majority of software in our review sup-
port Illumina (and in some cases, other technologies),
a fact that reinforces the status of the aforementioned
company. The second major player is Roche with
its 454 line of sequencers, which, despite the shut-
down of its technology in 2013, is still widely used
(officially supported until 2016).76 As a matter of
fact, Karect, one of the most recent error correctors
(2015), targets indel errors from 454. We can see
an increasing support of Pacific Biosciences, but
all current correctors rely on an additional dataset
from a different technology to perform the correc-
tion. Ion Torrent is not widely supported as of now,
but as the prevalent errors for this technology are
indels,5 the tools handling indels should also work
with it. Finally, there is only one program that targets
SOLiD color-space data, namely HSHREC.

In our review, we have found programs sup-
porting more than one technology. Table 2 enumer-
ates the technologies supported by the correctors
(column ‘Tech’). Figure 2 depicts the categories in
which the correctors fall. All but one of the tools sup-
porting only one technology work with Illumina and
only target mismatch errors. Hector is the exception
to the above rule, designed only for 454 reads, sup-
porting indels. All Pacific Biosciences software focus
only on Pacific Biosciences, but they use Illumina/454
reads for the cross-correction; therefore, they are
classified in a separate group.

There are several software tools handling multi-
ple technologies that can tackle all types of errors.
Our readers can determine the support for different
types of errors by consulting Table 2, columns ‘N’

and ‘Indel’. All programs support mismatches; there-
fore, it is not mentioned in the aforementioned table.
Some programs like HSHREC treat all datasets in
the same manner with no special handling for differ-
ent technologies (however, HSHREC has a special
version that can correct color space reads as a differ-
ent executable program). We included it in the first
category because the base space version does not
have a target technology.

The software with different profiles can be fur-
ther divided into software using the same correction
method for all technologies but setting different
values for parameters and software with internal
algorithmic modifications for a certain technology.
For the first group, Coral is a perfect example as it
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uses the same algorithm to correct both Illumina and
454, but in the case of Illumina, the algorithm sets
very high values for gaps, forcing mismatches only.
Blue, on the other hand, has a flag for 454 to enable
searching for homopolymer errors. Karect has
generic support for multiple sequencing technologies,
running in two modes, with indels or without.

A new approach is the cross-correction using
a high-quality short reads dataset to correct a dataset
that has (much) longer, lower-quality reads. There
are correctors targeting the very long reads produced
by Pacific Biosciences (LoRDEC, proovread, Jabba,
and LSC), 454 (Blue), and Oxford Nanopore
(Nanocorr).

The latest review that includes software-
supporting indels is from 2013,77 and it does not
include the latest additions to indel-aware software,
like Blue, Fiona, Pollux, or Karect. The authors of
the review stressed the need for better software solu-
tions with indels support as the results of the existing
algorithms at that time (HSHREC and Coral) were
not comparable to the Illumina-specific solutions.

Software Categories
We clustered the algorithms according to their core
functionality, extending the work in Refs 77,78.
Owing to the length limitation of the article, the indi-
vidual description of the correctors is located in the
Supporting Information. Table 2 summarizes some
important features of the analyzed software.

The k-spectrum-based (ksb) software corrects
the reads employing the k-mer spectrum.79 A k-mer
is a segment from a read with k-bases. The set of all
k-mers of a read is generated by using a sliding win-
dow of dimension k. At each step, the window is
shifted by one element, and ‘the visible’ segment of the
read is added to the spectrum set. This is by far the
most popular approach. Generally, the applications
use the k-mer spectrum (Figure 3) to decide whether a
k-mer is correct or not. The error-free k-mers are
those appearing in a number of reads entering a pre-
defined distribution (Gaussian in our example).
Roughly speaking, k-mers appearing in a small num-
ber of reads are considered erroneous; as the coverage
is not uniform, the k-mers in the low-coverage
areas are under-represented (more information about
k-mers can be found in the section ‘K-mer").

The suffix trie/array-based (stab) method gener-
ally builds a suffix structure with the common parts
of the reads. These correctors try to locate inconsis-
tencies in their path while exploring the trie/array.
Figure 4 depicts an example where a low frequency
of a divergent suffix signals a possible error case.
Normally, the reads on a trie follow the same path,
but it happens to diverge at some point. A corrector
has to decide if the split is an error or not. Figure 4
(a depicts a divergence point (different nucleotide)
where the frequency of one of the resulting paths is
very low (<k/2), and the bases of this path, after the
divergence point till the leaves, are exactly the same
as for the path with the frequency ≲k/2; hence, it is

Supported
technologies

Single

With profiles

Technology
specific code

(e)

Modify

existing flags

(f)

Cross-
correction

(c)

One
technology

Indels+

mismatches

(b)

Mismatches
(a)

Multiple

No specific
profiles

(d)

FIGURE 2 | Classification using the technology support among correctors; letters between paranthesises on the leaves used to group the
algorithms in Table 2.
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an error. For the other case where the frequencies are
the same (k/4), an SNP causes the divergence. Other-
wise, the common path till the divergence point is a
repetitive region in the genome followed by the
unique region for each path. The trie in Figure 4(b),
with the erroneous base in bold and italic,

exemplifies the branching caused by an error. The $
symbol marks the end of a suffix (a standard way of
depicting suffix tries). It is clear that due to the low
frequency of the suffixes containing the bad base, a
corrector can isolate the error and can take a valid
decision given enough coverage. Owing to the short-
ness of the reads in our example, we consider one
base to be sufficient proof of inclusion in one branch
or another. As a result, for the suffix AAA$, the third
base will match its counterpart from the suffix AGA$
(the first base is the same, as we are talking about the
same family of suffixes); therefore, A should be
G. Next, the branch TAAA$ triggers a warning for
the corrector due to the low frequency of its sub-
branch AA$. The problematic base is again sur-
rounded by bases that match a sibling path (i.e.,
TAAA can be converted to TAGA, with the latter
having a higher frequency); therefore, it is safe to
assume that A is in fact G. Finally, after analyzing
these cases, a corrector can support its decision by
detecting the relationship between the suffixes AAA$
and TAAA$, where the former is in fact included in
the latter, and the corrections on both sides have an
even higher degree of validity when taken together.

Multiple sequence alignment-based (msab) soft-
ware focus on aligning the reads to identify the over-
lap between them (see Figure 5). The methods use
different algorithms (like Needleman-Wunsch in
Coral73) to build a consensus from a set of reads that
are likely to fit together. Generally, these methods
cluster together a number of related reads (e.g., those
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FIGURE 3 | Typical distribution of k-mers used by ksb correctors;
vertical axis shows the number of k-mers that appear in the number
of reads displayed on the horizontal axis; first peak corresponds to
erroneous k-mers that appears only in a few reads; correct k-mers
typically exist in a number of reads close to the coverage; k-mers
found in many reads (right part of the spectrum) typically correspond
to repetitive regions.
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FIGURE 4 | Suffix trie example; (a) an error on the rightmost path results in branch having a very low frequency (<< k/2) compared with its
sibling branch (≲k/2); (b) example of a trie for a very short genome with read TAAA having an error on its third position
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having at least one k-mer in common, like Coral),
which may belong to (as the corrector may wrongly
include reads from other regions) the same genomic
locus. Reads containing k-mers appearing in multiple
loci or erroneous k-mers matching wrong locations
will normally be detected in the alignment process.
Being part of the same region, an msab corrector can
generate a multiple-sequence alignment and try to
determine and fix the anomalies in the resulting con-
sensus. The example Figure 4(b) demonstrates that
given sufficient coverage, a corrector is able to group
a number of reads, isolate the erroneous bases, and
make a decision if possible. In the above example, we
are able to take a decision in every case. On the con-
trary, if we have a mismatch between the first posi-
tion of the first read and the fifth position of the
third read, the decision is not straightforward any
more (if possible altogether). For instance, if instead
of [A,A] (the correct version) the pair would be
[A,N], the corrector would have to either ignore the
case or apply some kind of heuristic like converting
N to A as A is a valid nucleotide. On the other hand,
this heuristic could be rendered useless by the use of
quality scores where N has a very high score com-
pared to A (the previously considered valid base may
not be so valid after all). In this case, it is up to the
corrector to take the appropriate action using differ-
ent approaches and the context of the problem.

Read clustering-based (rcb) methods use
different clustering methods to group reads that fit
together. This group resembles the msab one, but

the algorithms in it do not generate an alignment.
Instead, they search for reads that are similar and
choose a consensus that is the correct form for all
these similar reads. Figure 6 shows a central read
(having the most common part with all the others)
and its satellites. For simplicity, we only exemplify
one different case. In our example, each of the four
satellites have one distinct nucleotide. A corrector
should group them together as they show a high
degree of similarity; hence, they are in fact clones of
the same read but with errors. Figure 6(b) is an exam-
ple (extracted from the bibliography74) where the con-
sensus read is the one with the highest frequency. The
other reads differ from the main read by just one
nucleotide and also have much lower frequencies.
Note that the algorithms included here do not perform
a multiple-sequence alignment to determine the correct
read; they just group them by differences and search
for a valid consensus, the error-free existing read.

Probabilistic model-based (pmb) methods use
the expectation maximization (EM) algorithm to
determine the correct base at each position by calcu-
lating the likelihood of the existing variants at that
specific position. The problem of error correction
boils down to selecting the right nucleotide at a cer-
tain position where two or more reads overlap, and
there is more than one choice. The pmb software
base their approach on the fact that this problem has
unknown parameters (unobserved component), in

Different nucleotides
satellite vs main

Main read

Satellite reads

9281

59

1

151

5
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sequences

Reads Frequency

FIGURE 6 | (a) Clustering approach for one reference read and
four related having one difference each; (b) real example with the
main read market in bold and the satellites aligned and with the
different locus market with bold and italic.

FIGURE 5 | (a) Multiple-sequence alignment of reads versus the
(prospective) reference genome; (b) example of four read with the
common k-mer "TTACGAA" and the four basic types of errors.
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this case, the correct base. As a result, using the exist-
ing input data (observed component) and maybe
more information (like the error rate), they try to gen-
erate a model (after multiple iterations over the same
data). This model can state the correction of a certain
nucleotide with a certain degree of accuracy. The EM
alternates between two steps, the E (guessing the prob-
ability) and the M (re-estimating the model parameters
using the new probability), until it converges to the
desired model. Figure 7 presents the basic algorithm.
For an extensive explanation of the EM algorithm, the
readers should check the article of Do and Batzoglou
from Ref 80. Different algorithms in this category use
different position comparison methods (position part
of k-mer or read) and convergence points.

Please note that many methods can be included
in more than one category. For instance, Coral73 is
listed in this review in the category of msb
algorithms,77,78,81 but it also uses the k-mer spectrum
to determine the related reads. The same case arises
with Premier82 and Premier Turbo,83 which use k-
mers to update the probabilities for the variants on a
position.

Recommendations
From Table 2, it is clear that depending on the nature
of the project, some programs are better than others.

For Illumina projects, almost all correctors can
be used. Although, as we shall see in the coming
sections (mostly in the section ‘Testing’), the
Illumina-only correctors offer a better performance
on Illumina data when compared to multi-technology
software.

From a computational resources point of
view, the correctors written in a low-level language
like C++ should be used. One must take this last
advice with a grain of salt as the performance is
highly dependent on the quality of the code and the
algorithms used. Another very important aspect is
the multi-core and multi-computer support. Nowa-
days, even mobile phones are multi-core, and the
speed of CPUs has hit a hard limit; therefore, any
piece of software capable of scaling on multiple cores
should be preferred over the others. These scalable
applications are very useful when the time frame is
very short. Furthermore, the same programs win
when testing multiple combinations of parameters at
the same time and running multiple instances of a
single-threaded program is not an option (e.g., when
the user has to run the next instance of the program
with a combination of parameters based on a previ-
ous run). Lastly, the multi-threaded programs would
normally consume less memory than multiple single-
threaded instances running at the same time. The best
example for this last observation is an OpenMP
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FIGURE 7 | The EM algorithm initializes the probabilities of the bases before entering the loop where it alternates between E-step and
M-step; once the convergence threshold has been reached, the method exits and enters the correction stage; the capital P represents the
probability for a base to be the real one.
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corrector creating a k-mer spectrum. An optimized
multi-threaded program would create just one struc-
ture to keep the k-mers and their count, and it would
allow thread-safe access to the structure. An opti-
mized single-threaded program using the same mech-
anism would avoid the locks, but for multiple
instances, the same structure would be replicated as
many times as running instances.

ERROR CORRECTION IN REAL
PROJECTS

The software presented so far was used in many
research projects. This section is the extension of the
motivation where we present instances where scien-
tists successfully employed error correctors. Hope-
fully, this section opens the door for further usage in
comparable or new cases. We concerted our efforts
to find real-life biological projects where the utility of
correctors is demonstrated by practical use. In con-
tradiction to what we found in the articles accompa-
nying each corrector, some real-life projects use the
correctors for additional applications like mithocon-
drial genome correction114 and RNA-seq.115–118

Recommendations
Continuing the discussion from the sub-
section ‘Recommendations,’ section ‘Error Correc-
tion Software,’ we can now see the role of correctors
in real projects. Quake7 is the most used corrector as
it targets the sequencing technology with the largest
market share. Furthermore, as we shall see in the
‘Testing,’ it has a good level of correction. As a gen-
eral rule, Illumina data should be handled by
Illumina-only correctors as they should be better
tuned for the technology than their general counter-
parts. There are exceptions like Coral73 that is used
for both Illumina and 454. The same software is uti-
lized with Ion Torrent for which there is a generic
support. Generally, the software supporting all types
of errors can be used with unsupported technologies,
but the user must understand that the result might
not be what (s)he expected. In the above case, Ion
Torrent is somewhat similar to 454, and hence,
Coral works. In the case of datasets from multiple
technologies, one can use more than one corrector
for each technology as Wang et al. did.115 Another
possibility is to use a cross-corrector like Blue, Lor-
DEC, proovread, and LSC where instead of stacking
up all the reads from multiple technologies, one can
use one technology to correct the other. The correc-
tors are used in many types of projects, with the most
targeted application being assembly. Variant calling

and different transcriptome studies are also very
common in the existing projects. A very important
fact emerging from Table 3 is the range of genome
data tackled with the stand-alone correctors. The size
and complexity ranges from bacteria (S. pyogenes) to
mammals (Dromedary) and plants (Loblolly Pine).

DISCUSSION

In this section of the paper, we discuss the most
important topics for the state-of-the-art error correc-
tion. It starts with the general problem of errors in
NGS data followed by the key features of the meth-
ods and ending with the main testing approaches.

Challenges

Data Preparation and Post-processing Steps
There are cases in which the input data must pass
through some additional pre-processing steps like the
conversion to a certain format. Blue performs a prep-
aration step to generate the k-mer spectrum. Reptile
has a pre-processing step to separate the reads from
their quality scores and to filter reads containing
ambiguous characters. CloudRS converts the FASTQ
input file to a specific format. Furthermore, it must
upload the converted input to the Hadoop cluster
and download the result locally when the job has fin-
ished. HSHREC generates the corrected output files
without the initial descriptions of the reads. Some
tools may need this information for further proces-
sing like SolexaQA++,167 which generates statistics
from multiple technologies. The dataset requires a
post-processing step (that the user must implement)
to restore the initial information. Secondly, HSHREC
generates two files, one containing all corrected reads
and the other the skipped reads. Generally, the out-
put of the error correction tools is FASTA/FASTQ,
and it does not require any explicit processing.

K-mer
K-mers Handling: Many methods base their decision
on k-mers and apply different techniques to deal with
the memory limitation and CPU requirements. BLESS
uses the hard-drive to store the k-mers during the
counting.168,169 RACER encodes the bases in a k-
mer as a 2-bit representation to save memory. A
newer version of Quake integrates Jellyfish170 to
count k-mers instead of its own implementation to
stay competitive against the more recent algorithms.
It also provides a distributed approach for those
cases in which the local memory is not enough to
handle the k-mers. To speed up the k-mer spectrum
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TABLE 3 | Work Using the Correctors Included in the Current
Review

Year Study Description Where

Quake/Illumina

2012 Exomes comparison of C. Carpio &
D. Rerio

119

2012 GAGE, evaluation of genome assemblies/
algorithms

69

2013 Salinarchaeum HArcht-Bsk1T genome 120

2013 L. arenae draft genome 121

2013 C. sinensis draft genome 122

2013 Genetic variants in C. sinensis 123

2013 Genome-wide mutations in diploid yeast 124

2014 Results of correction of heterozygous NGS 125

2014 O. sativa de novo assemblies, novel gene
space aus/indica

126

2014 Study of hydrocarbons production from
fatty acids in Cyanobacteria

127

2014 Genetic diversity in P. pacificus from
population-scale re-sequencing

128

2014 Genetic parameters estimation and
response to selection in breeding
program of M. galloprovincialis

129

2014 Metagenomic characterization of
C. defluviicoccus tetraformis

130

2014 Prediction of antibiotic resistance by gene
expression profiles

131

2014 Methicillin resistance in S. aureus 132

2014 De novo creation of repeat libraries from
whole-genome NGS reads

133

2014 Aerobic fungal degradation of cellulose 134

2014 B. tryoni draft genome 135

2014 Genome reorganization 136

2015 P. vulgata/P. lamarcki draft genomes 137

2015 The domestic dromedary genome 138

2015 The brown kiwi genome 139

2015 Comparative genomics of S. pyogenes
M1

140

2015 Approach for identification and
characterization of foodborne
pathogens

141

2015 P. glaucus complete mitochondrial
genome

114

2015 Mechanisms for speciation and caterpillar
chemical defense

142

BayesHammer/Illumina

Year Study description Where

2014 GABenchToB, assembly benchmark for
bacteria genomes

143

TABLE 3 | Continued

Year Study Description Where

2014 C. burnetii genome 144

2014 P. atrosepticum genome 145

2014 Hidden diversity in honey bee gut
symbionts

146

2014 S. lemnae draft genome 147

2015 Discovering natural products from
Cyanobacteria

148

2015 Characterize the metabolism of
M. thiooxydans L4 in the marine
environment

149

2015 Utilization of alginate and other algal
polysaccharides by marine Alteromonas
macleodii ecotypes

150

2015 Genome-Wide Re-distribution in Active
Yeast Genes

151

2015 Study of the metabolome of
M. producens JHB

152

Reptile/Illumina

2014 Decrypting cryptobiosis-analyzing
anhydrobiosis using transcriptome
sequencing

115

2015 SNP genotyping and population genomics
from expressed sequences

153

HSHREC/Illumina, 454

2014 Decrypting cryptobiosis-analyzing
anhydrobiosis using transcriptome
sequencing

115

BLESS/Illumina

2014 Transcriptome, sequence polymorphism,
and natural selection in P. eremicus

116

Blue/Illumina

2014 S. scitamineum genome 154

Coral/Ion Torrent(a), Illumina(b), 454(c)

2014 GABenchToB, assembly benchmark for
bacteria genomes(a)

143

2014 Global gene expression in the exocarp of
developing P. avium L.(b)

117

2015 Comparative genomics/gene expression
applied on P. xuthus and P. machaon
genomes(c)

155

DecGPU/Illumina

2013 Genomic analysis of S. dulcamara 156

Echo/Illumina

2012 Pipeline for small RNA-seq data analysis 118

2014 Results of correction of heterozygous NGS 125

2014 Assembly/annotation for T. pratense 157

Freclu/Illumina
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generation, Parallel Reptile implements a parallel
counter. The authors of Ref 106 use general-purpose
computing on graphics processing units (GPGPUs) to
generate the k-mer spectrum. A rare feature is the
support for variable k-mers for grouping reads as in
Ref 109, where the corrector uses a wildcard-based
k-mer.

K-mer Size Selection: The value of k is
extremely important.7,82 A very low value for k
would result in many k-mers appearing in most
reads, thus joining in group reads without any real
relation. On the contrary, very large values would
generate too many unique k-mers, which also have a
higher probability of including more errors, therefore
introducing noise into the grouping. Long k-mers
may also require more RAM memory.

The analyzed methods set the size of the k-mer
by accepting a user value, having a fixed default

value, and/or performing automatic selection. Ham-
mer requires the user to set it. Quake and ECHO
define a formula to determine the optimum value as
presented in Table 4. Reptile considers 10 ≤ k ≤ 16
enough for microbial genomes, fitting the spectrum
in less than 4 GB of RAM. Coral uses a default value
of 21 for the k-mer. Hector and Musket require both
the k-mer length and the total estimated number of
k-mers from all reads. HiTEC and Fiona automati-
cally identify the optimum k-mer length at each step.
CloudRS stacks reads using a wildcard-based 25-mer
and, later in the correction procedure, a fixed 24-
mer. The k-mer size should be odd in order to avoid
palindromic k-mers.171 The software using k-mers in
their pipeline are marketed in Table 2, column ‘k’.

K-mer Distribution: Software relying on correct
and erroneous k-mers try to fit the k-mer spectrum
on a certain distribution. The correctors compute the
histogram with the frequencies for each k-mer in
the set of reads. A valid estimation tries to model the
initial, complex distribution as a combination of mul-
tiple, simpler distributions.7 Quake divides the solid
k-mer distribution in a combination of a normal and
a Zeta distribution, and it considers (like BLESS) the
weak k-mers to generate a Gamma distribution.
Lighter assumes a Poisson distribution, like Fiona.
REDEEM models the k-mer distribution as a multi-
nomial one. For 454, Hector encodes homopolymers
using the base and the multiplicity. The authors
observe that the distribution of the original reads
tends to be unimodal. With the encoding applied in
the homopolymers space, the distribution of the
homopolymers spectrum is analogos to the one
(bimodal) obtained by Musket in base space. The
same authors conclude that, generally, the homopoly-
mers spectra are bimodal.

Coverage Cut-off and K-mer Distance: K-mer-
based error correction methods can cut the k-mer his-
togram to remove k-mers with too high or too low

TABLE 3 | Continued

Year Study Description Where

2011 MicroRNA-mediated gene regulation role 158

2011 Purification of monocyte subsets from
H. sapiens blood and their
transcriptomes analysis

159

2013 Identification of functional cis-regulatory
elements

160

Hector/454

2015 Triple-negative breast cancers in patients
with no BRCA1 or BRCA2 mutation

161

Lordec/PacBio, Illumina

2015 De novo tandem repeat detection using
short & long reads

162

LSC/PacBio, Illumina

2014 D. officinale genome and genes analysis 163

2015 Detect fusion genes, determine fusion
sites and identify and quantify fusion
isoforms

164

2015 S. miltiorrhiza transcriptome and
tanshinone biosynthesis insights

164

proovread/PacBio, Illumina

2015 Characterization of venom toxin-encoding
genes in E. coloratus

165

QuorUM/Illumina

2014 P. taeda reference genome 1

RECOUNT/Illumina

2012 Brain tumor glioblastoma-derived neural
stem cells transcriptome analysis

166

L. arenae, Litoreibacter arenae; C. sinensis, Citrus sinensis; O. sativa, Oryza
sativa; P. pacificus, Pristionchus pacificus; M. galloprovincialis, Mytilus
galloprovincialis; C. defluviicoccus tetraformis, Candidatus Defluviicoccus
tetraformis.

TABLE 4 | Formulas to Determine the k-Mer Size for Non-
automatic k-mer Determination

Formula Where

k = log4200N 7,70

k ≥ log 4N 73

k > N 84

k = l/6 108

k = log42Np
−1; p = 10−4 94

Ns/4k ≤ 0.0001 96

N = Genome length, l = read length; p = probability that a random k-mer
appears in a random string of length N, using the alphabet {A, C, G, T}; Ns
= number of unique solid k-mers as reported by BLESS.
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frequencies, which normally reduces the noise caused
by highly repetitive regions or singular errors. Some
algorithms automatically compute the best cut-off
value, allowing users to override this value. Quake
uses the Broyden-Fletcher-Goldfarb-Shanno method
to calculate the histogram cut-off, but this method
fails when the curve of the distribution is not smooth
enough.71 The authors of Musket empirically deter-
mined that the lowest count for a k-mer around the
valley can be a good cut point. Musket also has an
option to use a user-provided value. Trowel uses a
different approach by using the contiguity of high-
quality-score bases instead of the coverage. It also
expands the trusted k-mer set, adding new k-mers
after they are corrected. QuorUM bases its decision
on the quality of bases from k-mers. Therefore, all
bases in a solid k-mer must have a quality greater
than a threshold. RACER uses an internal threshold
to deem a k-mer followed or preceded by a certain
base either as solid or weak. Hammer and Reptile
create a Hamming graph for the array of all k-mers,
locating groups of similar k-mers that only differ in a
few positions and then collapsing all those k-mers
into a consensus k-mer. To improve memory con-
sumption, Lighter uses a random method to decide
whether or not to store a k-mer, assuming that a cor-
rect k-mer appears multiple time in a dataset; thus,
the chance of being selected is high.

Repetitive Regions
In general, the problem of repetitive regions cannot
be tackled by considering individual reads or k-mers
in isolation. Some argue that in the case of highly
repetitive genomes, a sequencing error has a greater
probability to change a solid k-mer to another solid
k-mer.7 They calculated the percentage of all one-
base mutations for a k-mer k that will convert k into
a sequence that also exists in the genome. The results
show a 2.25% for E. coli and 13.8% for the human
chromosome 1, with a 15-mer and an 18-mer,
respectively. Increasing the k-mer length up to 19 did
not significantly change the result, dropping the per-
centage to 11.1% for the Homo sapiens’ first chro-
mosome. The different percentages obtained for the
two organisms result from the higher complexity of
the human genome. REDEEM was specifically
designed to handle repeats. The main problem with
repetitive regions is the similarity of two sequences
that reside on different loci of the genome. A correc-
tor may try to convert them to a consensus, hence
destroying the existing valid zones. These wrongly
fixed reads would prevent an assembler from cor-
rectly composing the real genome (or make it gener-
ate chimeric assemblies). It is a real problem for

highly repetitive genomes (plants).77 Furthermore,
misreads in repetitive regions can cause an abnormal
high frequency of a k-mer,172 which could result in
an erroneous classification as solid by some correc-
tors. The methods based on multiple-sequence align-
ment are more resilient to challenges posed by
repeats, although they do not totally solve the prob-
lem.108 The relationships between reads can tackle
some small repetitive regions to some extent because
of the higher length of the analyzed strings compared
to k-mers. Moreover, a read from a repetitive region
has a higher probability to enter the right group pro-
vided it shows enough dissimilarity with other repeti-
tive regions. Fiona implements a filter to remove
suffixes with an unreasonably high frequency and
supports tandem repeats. Blue addresses the problem
with repeats by evaluating alternative fixes for a read
(it works in the case of significant differences among
reads). proovread takes into account the loci of the
long reads where large blocks of short reads map,
collecting many reads. In contrast, nonrepetitive
regions may not even participate in alignments
because of the resulting uniqueness from the Pacific
Biosciences’s high error rate. CloudRS makes use of
a high frequency k-mer filter to avoid stacking reads
from repetitive regions. Column ‘Rep’ from Table 2
lists the support for repetitive regions.

Ploidy
A corrector must distinguish between errors and var-
iants. As most error correctors were tested on bacte-
rial genomes, the information about the behaviour of
most tools is restricted to the haploid case. The sup-
port for heterozygosity is stated in the column ‘Hzy.’
in Table 2. Authors of Ref 52 apply a smoothing
technique to avoid removing zones with only biologi-
cal variants. They build a tree using the frequency of
reads and consider a true variant as a sequence
appearing with a high enough frequency compared
with the parent sequence. Their decision is based on
the fact that the frequencies of a variant should be
much higher than the ones from the sequencing
errors. The authors of ECHO explain a modification
to support a diploid genome with homozygous and
heterozygous genotypes. Their approach is to con-
sider a uniform distribution over all possible geno-
types. They skip a correction if the estimated
coverage is much greater than the expected coverage
at an analyzed locus.

Read Trimming and Splitting
To avoid the propagation of errors to the next steps,
the correctors may eliminate bases from both ends of
a read, which can be considered a complementary
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method to reduce errors.104 Users should take great
care in using trimming because it can heavily influ-
ence the next steps like assembly, where the final
result may become fragmented91 as the assembler is
not able to find proper overlaps among reads. How-
ever, not trimming faulty bases may result in errone-
ous assemblies.69 Some authors56,106,173 try to fix the
read first, and when this is not possible, they trim
it. If the result remains unsatisfactory, they discard
the read. Another approach is to pre-process the
reads and cleave the suffixes and prefixes that have
low-quality scores to decrease the number of false
positives in the k-mer spectrum.88 One must be care-
ful with the quality scores and remember that the
accuracy of the quality scores depends on the library
preparation method as demonstrated for Illumina
MiSeq® data.48 When dealing with very long reads
like Pacific Biosciences with a high percentage of
errors,62 along with considering trimming their ends,
an additional approach is to split the long reads into
smaller, high-quality segments. The authors of Ref
85 do not correct the spurious bases, opting instead
to split the read at the locus of the error and to
remove the faulty base(s). They argue that for a fur-
ther assembly step based on k-mers such as Velvet,171

their method should not pose any problems.

Unknown/Uncalled Bases
The unknown bases (denoted by N in Illumina and
Roche 454 sequencing) are one of the four basic
types of errors. Schirmer et al. conclude that this
type of error does not occur randomly as supported
by their nonuniform distribution. Column ‘N’ from
Table 2 indicates whether the correctors support Ns
or not. In some cases,4,52,55,104 the authors prefer to
exclude all reads that contain one or more uncalled
bases. Other programs (such as LSC) eliminate the
reads that have a frequency of Ns above a threshold.
A different strategy is to convert each unknown to a
real base, like RACER, Reptile, and Parallel Reptile.
Tools such as Refs 73,97 tackle the unknown bases
in the correction process. Some authors fail to men-
tion the support for uncalled bases in their papers;
therefore, it is up to the user to experiment. As the
unknown bases are a type of error,41 the authors
should make it clear whether their software supports
them or not. In Ref 97, the authors put together a
table with a selection of correcting software and their
features, including the handling of uncalled bases.

Low-Coverage Regions and Uniformity
Illumina sequencing generally has a higher average
coverage than other platforms,174 but the reads may
not be suited for phylogenetic profiling due to their

limited length when a high resolution is required.
However, many studies54,175–177 have found that
GC-poor and GC-rich regions have low coverage or
even no coverage at all. An error corrector must con-
sider these platform-specific shortcomings to increase
sensitivity and specificity.7

The authors of MyHybrid and Coral state that
correction methods expect the coverage to be rela-
tively high and use that multiplicity for a meaningful
decision. Therefore, they cannot do much for reads
from low-coverage regions. The methods that use a
threshold for weak/solid k-mers will work if the cov-
erage is high enough or uniform, but they will end
up destroying the low-coverage regions (QuorUM
tries to avoid this problem). Edar takes into account
the bias introduced by GC regions when calculating
the k-mer coverage by actively considering the GC
content of the k-mer. For a reliable result, the
authors recommend using a reference genome to
accurately calculate the coverage. While many
authors do not state the minimum required coverage
for a successful correction, ECHO’s paper specifies a
coverage of 15 or higher. Hammer and BayesHam-
mer are specifically designed for error correction
without uniformity assumptions. Due to uniformity,
some authors admit their algorithm’s limit, like in
case of Reptile where a nonuniform coverage and the
existence of more than one acceptable tile force the
algorithm to skip a correction decision. The authors
of Blue mention the caveat of a simple k-mer cut-off
due to uniformity that can result in the rejection of
correct k-mers in low-coverage regions and the
acceptance of erroneous k-mers in very high-coverage
regions. Fiona detects erroneous k-mers by calculat-
ing the expected coverage for each k-mer, given a
uniform sampling of genomic positions. It uses a
hierarchical statistical model to describe the expected
coverage distribution of k-mers based on library
preparation and sequencing.

Parameters
All the methods rely on specific thresholds, lengths,
ratios, and/or probabilities to drive their correction.
As the methods evolve, they tend to move the burden
of choosing the best-suited values for their parameter
from the user to themselves.

Generally, the k-mer size has a default (user
adjustable) value. However, some correctors like
Quake require an explicit value from the user but
offer a formula to determine it. Coral has a default
value, but it also proposes a formula in order to
obtain the best results.

The technology flag can explicitly set the source
technology. For example, Coral has flags for

Advanced Review wires.wiley.com/compmolsci

130 © 2016 John Wiley & Sons, Ltd Volume 6, March/Apr i l 2016



‘Illumina/454,’ while Fiona has for ‘Illumina/Ion
Torrent/454’, which helps the software to decide the
best approach for correction. Others have options
that target the errors specific to a specific platform,
that is, homopolymers errors in 454 with the ‘hp’
flag for Blue. Karect can run with indels support (Ion
Torrent, Roche 454) or without it (Illumina).

Parameter selection automatic/manual: A man-
ual method to select parameters requires the user to
try different values for different parameters to obtain
the best results. An automatic method would prevent
the user to provide additional valuable information
to infer the best actions the algorithm has to take
during the correction process. We must distinguish
between automatic determination of the best value
for the dataset/analyzed case and the default value of
a parameter (deemed by the authors to be an accept-
able value). HiTEC and Fiona support fully auto-
matic parameters values selection. Note that HiTEC
needs the length of the genome and the percentage of
errors as input, but these two parameters remain the
same for a certain dataset.

Single Threaded vs Parallel
Generally, the programs from this review support
parallel processing using multiple threads. There are
methods, like BLESS, that can compete against multi-
threaded software due to their approach, despite
being single threaded. Other methods like Reptile
have been updated to run on multiple CPUs,89 using
the same initial correction mechanism. The parallel
implementations are a normal trend as both the NGS
data size and the length of the reads increase.

A distinction must be made between those pro-
grams being natively parallel (they internally split the
jobs between multiple workers), like Coral and
HSHREC, and those that have no parallel implemen-
tation, but their input can be divided in chunks, and
multiple processes can be launched on different frag-
ments of the initial dataset, like in the case of
proovread.

Parallel Technology: The readers can check the
parallel technology used by a corrector in column
‘Par. Tech.’ from Table 2. Most of the parallel imple-
mentations use OpenMP to distribute the workload
among the threads. DecGPU and Parallel Reptile
support distributed-memory computing by using the
Message Passing Interface (MPI). The distributed-
memory model requires more complex programming
and configuration but enables the use of a larger
amount of RAM memory. This advantage may ena-
ble tackling larger-scale correction problems that
cannot be addressed on a single node. Other meth-
ods, such as Quake, use parallelism only for counting

k-mers. Furthermore, proovread and Nanocorr can
run on multi-core desktops and distributed clusters
using queuing engines like Sun Grid Engine (SGE)
(commercial)a and Simple Linux Utility for Resource
Management (SLURM).178 As of now, there are two
fully distributed methods using the Map-Reduce
(Hadoop) paradigm.109,110 An interesting addition to
the field is FADE,101 the Field Programmable Gate
Array (FPGA) error corrector that unleashes the mas-
sive parallelism available on FPGA devices to tackle
the errors.

Operating System and Programming
Language
Resource consumption is a problem because of the
continuous growth of the size of the NGS data.
Owing to this, we observe that the majority of
authors chose a low-level language like C or C++ to
implement their solution. An interesting trend is the
use of C++ over C in writing the software, with just
one program (from those being available online for
us to analyze), Coral, being implemented in pure
C. The C# implementation of Blue obtains the best
performance when compared with other algorithms
on Illumina and Roche 454. Even though C# is not
considered to be a high-performance language, Blue
performs really well against the rest of the algo-
rithms. Some correctors appear to be implemented in
Perl and/or Python. These are often scripts that are
used to execute third party software. In case of LCS,
the authors offer a software wrapper written in Perl
that uses an external aligner to map the short reads
against the long ones. Nanocorr is a python wrapper
for BLAST and pbdagconb. For the readers’ conven-
ience, we list the programming language of choice
for each corrector in Table 2.

Overall, the correctors should work on the
three most important desktop/server operating sys-
tems: Windows, Linux, and Mac OS. Some authors93

mention the supported platform in their papers. Gen-
erally, the authors prefer to support Unix flavors and
to distribute the source code and the instructions to
build it. Furthermore, the tests for the majority of
correctors were performed under Linux, with some
authors also using Windows.52 Besides personal
computer-based methods, we included a corrector
that runs on FPGAs—FADE (even though it uses the
help of a computer to handle the data transfer and
storage).

Recommendations
Depending upon the pre-processing type, a corrector
that can separate the steps of the correction can save
a lot of time when processing big datasets. For
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instance, Blue can generate the k-mer table in a sepa-
rate process. In its case, the advantage is twofold.
Firstly, it can use the same k-mer table for multiple
runs with the different combinations of values for the
majority of parameters that are not involved in the
histogram’s generation. Secondly, it makes cross-
correction possible as the k-mer table can be gener-
ated from one technology that can be used to correct
data from a different one. Another important aspect
is the k-mer size selection. Any program able to
determine the size of k-mers automatically (HiTEC)
or use variable sizes (Fiona) is recommended over
those with user-defined only k-mer size selection.
Another recommendation is to select a software like
Fiona or Blue that considers repetitive regions as they
may avoid altering similar zones with SNPs. The
unknown bases support depends upon the sequen-
cing technology used as some technologies do not
produce this type of error. Furthermore, one can eas-
ily write a script that can convert the unknowns into
random or specific nucleotides. The low-coverage
issue must always be a top priority as some algo-
rithms can skip those zones because of limited infor-
mation. Finally, the user must be careful with the
trimming and the splitting of the reads. In the former
case, a corrector (like Quake and DecGPU) may trim
a read if the correction is not possible. If the result is
then fed to an assembler, the correction may nega-
tively influence the overlap detection. Edar applies a
distinct correction mechanism by cleaving the reads.
This approach may be detrimental for any further
steps because the reads become much shorter and the
relationships between sub-segments that are part of
the same read are lost forever.

Testing
This section focuses on the testing part included in
the analyzed papers. We extracted all datasets that
we could identify in the papers along with the results
provided by the authors. Owing to space limitation,
we split the datasets in two categories. Table 5 lists
all those datasets appearing in Refs 77,78. The rest
of the datasets (second category) along with the
benchmark information are located in the Supporting
Information. The gain metric for both categories is
calculated (by the authors or by the reviewers) using
the formula from Ref 77. The readers must be careful
though because there is no standard way to count
true positives (TP), false positives (FP) and false nega-
tives (FN). As a result, the numbers given by the
authors and the reviewers must be taken with a grain
of salt. The reliable gain appears in the same column
(same review, the authors used the same testing

approach for all software). The hardware configura-
tions used by the correctors’ authors and in Ref 78
as more sections related to testing are located in the
Supporting Information.

Methods
Some metrics are general and do not focus on
certain types of error correction mechanisms. For
instance, the sensitivity and specificity appear in
k-mer-spectrum methods like Reptile, suffix trie/array
methods like SHREC, and multiple sequence align-
ment (MSA) methods like Coral. The sensitivity, the
specificity, the gain, and the genome assembly statis-
tics are the most widespread metrics.

Simply counting the mapping reads that did not
map before and after the correction can prove the
effectiveness of a corrector.53,64,104 However, the dif-
ferences obtained heavily depend on the aligner’s
parameters. For example, the authors of Ref 77 test
with different values for the aligner, albeit only for
datasets with indels.

In the case of artificial datasets, it is possible to
report quite reasonable error rates before and after
correction.85,108 However, the exact error rate for
real data can only be estimated.44

Gain/Specificity/Sensitivity
The gain (G), specificity (SP), and sensitivity
(SE) metrics (for formulae, see Equation (1)) seem to
have become the de facto on error correction. SP and
SE first appeared in Ref 55. G84 represents the per-
centage of eliminated errors. They are all based on
counting:

• TP (true positives) existing errors that are
corrected,

• TN (true negatives) correct bases left
unmodified,

• FP (false positives) correct bases that are
wrongly considered being faulty, and

• FN (false negatives) erroneous bases left
unmodified.

G=
TP−FP
TP+ FN

, SE =
TP

TP+FN
, SP =

TN
TN+FP

ð1Þ

There are differences in how the authors of each tool
compute TP/TN/FP/FN. For Reptile, they compute
the errors on base level, while for SHREC and
RACER, they count the errors on reads level (a read
is either error-free or erroneous, without considering
the number of bad bases). The lack of a standard
approach on counting the errors leads to some
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serious inconsistencies in the results published in the
literature by the same tool in different benchmarks
even using the same dataset and formula. For exam-
ple, in Ref 77, Coral obtains a score of 0.002 for an
Illumina dataset (SRR022918), while with the
same dataset, it scores 0.97 in its own paper. There
is no doubt that Coral is a good corrector
(as demonstrated by Ref 41), and even in the afore-
mentioned survey, it performs really well on datasets
with indels. The problem lies with the different
approaches for the tests, which are not infallible.
Moreover, the previous difference in score may arise
just by changing the way of preparing the datasets
before correction. Even though the approach is the
same (filter non- and multi-mapping reads), the
aligner can make a difference too. Salmela et al.73

use Soap, while Yang et al.77 use BWA.179,180

Table 5 contains the results obtained by some correc-
tors in Refs 77,78 on a number of datasets. The dif-
ferent results obtained in the original article versus
the surveys can be explained by the difference in
dataset preparation, FP/TP/FN/TN counting, and
maybe different versions of the tested programs. The
Supporting Information contains the results.

Assembly
The majority of the recent publications include some
information about the assembly performance. Many
list the N50 metric and the contigs count, but there
are variations. Salzberg et al.69 define N50 value as
‘the size of the smallest contig (or scaffold) such that
50% of the genome is contained in contigs of size
N50 or larger.’ A contig is a multiple-sequence align-
ment of reads represented as a consensus, while the
scaffold is a list of contigs that defines their order,
orientation, and the length of the gaps between
them.181 Pluribus’ paper provides the number of
nodes in the Bruijn graph generated by Velvet, which
gives a measure of the fragmentation of the assembly.
For QuorUM, the E-size statistics69 complements the
N50 value.

While N50 and the maximum contig length
measure the quality of error correction and give valu-
able feedback over the correction, the authors of Ref
97 state that these metrics are not always accurate.
This happens mainly because the assemblers can gen-
erate chimeric contigs in overcorrected datasets. In
any case, the correctness of an assembly is hard to
verify.182 As a consequence, more refined assembly
evaluation approaches are considered (e.g., the
Mauve Assembly Metrics183 for Blue). BLESS uses
several assemblers from two different categories
(de Bruijn and string graph-based). This approach
increases the reliability of the capability to produce

valid results that do not fit a certain type of assem-
bler (or worse, a certain assembler) and to prove the
corrector’s generality. Furthermore, the same authors
do not just provide the value of N50; they also assess
the quality of the assembly using GAGE69 (like the
authors of Musket).

For BLESS, the authors chose only artificial
datasets to demonstrate the capabilities of their
implementation. DecGPU contains the assembly
information only for their corrector, not the other
correctors in their benchmark. Salmela73 eliminates
the trimmed reads generated by Quake because the
Illumina-only assembler Edena184 can only handle
reads with the same length.

Our readers can find the assembly results
(where available in the original paper) in the table
with the performance assessment from the Support-
ing Information.

Genomes Used for Testing
A recent review81 tests seven correctors on three large
genomes (H. sapiens, Drosopila melanogaster, and
Caenorhabditis elegans) among others. The datasets
for the aforementioned species are very large,
between 31 million and 1.7 billion reads. As dis-
cussed in Ref 108, the more complex, diploid gen-
omes bring up the problem of heterozygosity and
how to discriminate between true variants and
sequencing errors. The repetitive regions also pose a
problem to the corrector as mentioned by the authors
of Musket and HiTEC. We can see a clear focus on
the human genome as the largest and most complex
datasets for benchmarking come from this organism
(for BLESS, Blue and Fiona).

Real versus Artificial Datasets
We discern three situations for the datasets used in
benchmarks: correctors tested only on simulated
datasets, only on real data or both types of datasets.
The main stated reasons for avoiding artificial data-
sets are the lack of simulators capable of producing
meaningful data and the nonexistence of some real
challenges that only appear in already existing real
data.73,84 To generate the artificial data, simLibrary
was used for BLESS, simNGS185 for Lighter,
Mason186 for Hector and ART187 for Pluribus.
Pbsim188 is cited in Ref 63, but the authors did not
use it as they preferred to perform their tests on real
data only. Correction software from 2013 onwards
are tested mainly on data generated with dedicated
software opposed to previous use of in-house
mechanisms. Some authors test their work on exist-
ing artificial datasets, for example,172 for Edar
and189 for Qamar.
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Resource Consumption
Despite the fact that early methods were not explic-
itly targeting a reduction in the requirements on CPU
and memory consumption, all the current methods
try to address this aspect. Some of the first stand-
alone error correction methods were developed in
Java while the latest prefer C/C++. Blue (2014) runs
on the Microsoft. NET® platform while offering a
very good performance. Many authors do not specify
the exact method of determining the resource con-
sumption. The authors of Refs 62,73 use the Unix
time command.

There are multiple approaches to measure
memory consumption. This is especially troublesome
when testing programs in C/C++ against the ones in
Java. For the latter, the simplest way is to measure
the memory used by a process, but one must be care-
ful with the memory allocation of the Virtual
Machine (VM). In case of very small datasets, the
overhead added by the VM can result in a skewed
view of the real behaviour. Even the memory usage
of native programs is hard to assess under Linux
given the fact that there are two main memory types:
virtual memory and resident set size. Most of the
papers do not state how memory is measured, mak-
ing comparisons difficult. We also observed a lack of
information regarding the number of threads used to
assess the performance in some cases. For example,
the authors of Ref 55 state the use of multi-cores but
does not mention how many threads were actually
used in their test. The scalability of the program, that
is, how the software behaves with an increasing num-
ber of threads, is often not evaluated. Some authors
like Ref 97 present additional test cases in which they
only assess their program, usually for very large data-
sets. Table 5 contains the results for a number of
correctors. For the readers’ convenience, we also
included the results obtained in the original articles.
One can see some differences in the memory and time
obtained for the same dataset. This is not necessarily
a sign of overinflated results in the original work but
more of a difference in the testing system and how
the authors prepared the data for correction. Further-
more, there is no clear indication of the version of
the program used in the original benchmark and sur-
vey benchmark, respectively. The aforementioned
table is a guideline for the interested user that can
help him/her choose the right tool given the target
hardware.

Recommendations
Using the three benchmark reviews cited earlier, we
can see some correctors that emerge as the winners.

Molnar and Ilie81 consider BLESS, Musket, RACER,
and SGA the best choices for HiSeq data. The last
three were also able to handle H. sapiens datasets
with over 1.3 billion reads of 100–103 bp on a Dell
computer with 32 cores and a 1TB RAM. For
Illumina MiSeq® RACER wins in three from a total
of four tests. Tahir et al.78 recommend HiTEC,
ECHO, and DecGPU. In their opinion, the first two
have a positive with their automatic parameter selec-
tion that can optimize performance. Finally, Yang
et al.77 obtain good results with Reptile and HiTEC
for Illumina data. Unfortunately, HiTEC fails to run
for three of seven datasets. This review also includes
datasets from Roche 454 and Ion Torrent, where
Coral wins in all cases against HSHREC. The two
aforementioned correctors supporting indels do not
obtain a high gain for Illumina datasets, making
them inferior to Illumina-only correctors.

An important advice for the reader is to con-
sider more than one metric when selecting a pro-
gram. We recommend that (s)he should consider not
only gain, sensitivity, and specificity but also other
metrics like genome assembly and short read align-
ment. Another important aspect is the type of data-
sets used in testing. A corrector able to handle
heterozygous organisms such as H. sapiens (like
Blue, Fiona, and BFC) should perform well with
other complex organisms. From a resource consump-
tion perspective, BLESS uses the least memory, but it
is single threaded and quite slow as it uses the disk.
Blue, on the other hand, obtains some very good
results in its own publication, offering a trade-off
between memory and CPU consumption.

CONCLUSION

As the sequencing market share suggests, Illumina
has become an important player in the industry. Our
review strongly supports this claim based on the gen-
eral support for this technology, with almost all pro-
grams supporting either only Illumina or Illumina
plus additional sequencing technologies. Pacific Bios-
ciences and Oxford Nanopore technologies with their
(very) long reads gave birth to a new trend. This
trend requires the evolution of error correction tech-
niques to support longer reads and to deal with the
high error rate that these technologies currently have.
Overall, we can see improvements in the area of
error correction for different technologies as the new-
est methods are both resource efficient and offer a
very good level of correction. A reliable and struc-
tured way to measure the accuracy is also very
important.
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There is room for further improvement espe-
cially on the biological aspects of the correction.
Here, we refer to concepts from biology like ploidy,
heterozygosity, and repetitive regions not the more
computer science-oriented concepts like the memory
consumption, genome representation on two bits per
base, and multi-core support. Now that the error cor-
rection field has been sufficiently explored, the newer
methods improve over the existing ones. A not-so-
favorable trend is the nonexistence of some mature-

enough methods that are constantly enriched with
new features as in other related fields like assembly
(Mira190) or short sequence alignment (BWA180).

NOTES
a Available at http://www.univa.com/products/grid-
engine.php
b Available at https://github.com/PacificBiosciences/
pbdagcon
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