Contents

Chapter 1: Introduction to Artificial Intelligence and Soft Computing

1.1 Evolution of Computing
1.2 Defining AI
1.3 General Problem Solving Approaches in AI
1.4 The Disciplines of AI
 1.4.1 The Subject of AI
 Learning Systems
 Knowledge Representation and Reasoning
 Planning
 Knowledge Acquisition
 Intelligent Search
 Logic Programming
 Soft Computing
 Fuzzy Logic
 Artificial Neural Nets
 Genetic Algorithms
 Management of Imprecision and Uncertainty
 1.4.2 Applications of AI Techniques
 Expert Systems
 Image Understanding and Computer Vision
 Navigational Planning for Mobile Robots
 Speech and Natural Language Understanding
 Scheduling
 Intelligent Control
1.5 A Brief History of AI
 1.5.1 The Classical Period
 1.5.2 The Romantic Period
 1.5.3 The Modern Period
1.6 Characteristic Requirement for the Realization of Intelligent Systems
 1.6.1 Symbolic and Numeric Computation on Common Platform
 1.6.2 Non-Deterministic Computation
 1.6.3 Distributed Computing
 1.6.4 Open System
1.7 Programming Languages for AI
1.8 Architecture for AI Machines
1.9 Objective and Scope of the Book
1.10 Summary
 Exercises
 References
Chapter 2: The Psychological Perspective of Cognition

2.1 Introduction
2.2 The Cognitive Perspective of Pattern Recognition
 2.2.1 Template-Matching Theory
 2.2.2 Prototype-Matching Theory
 2.2.3 Feature-based Approach for Pattern Recognition
 2.2.4 The Computational Approach
2.3 Cognitive Models of Memory
 2.3.1 The Atkinson-Shiffrin’s Model
 2.3.2 Debates on the Atkinson-Shiffrin’s Model
 2.3.3 Tulving’s Model
 2.3.4 The Parallel Distributed Processing Approach
2.4 Mental Imagery
 2.4.1 Mental Representation of Imagery
 2.4.2 Rotation of Mental Imagery
 2.4.3 Imagery and Size
 Kosslyn’s View
 Moyer’s View
 Peterson’s View
 2.4.4 Imagery and Their Shape
 2.4.5 Part-Whole Relationship in Mental Imagery
 2.4.6 Ambiguity in Mental Imagery
 2.4.7 Neuro Physiological Similarity between Imagery and Perception
 2.4.8 Cognitive Maps of Mental Imagery
2.5 Understanding a Problem
 2.5.1 Steps in Understanding a Problem
2.6 A Cybernetic View to Cognition
 2.6.1 The States of Cognition
2.7 Scope of Realization of Cognition in Artificial Intelligence
2.8 Summary
 Exercises
 References

Chapter 3: Production Systems

3.1 Introduction
3.2 Production Rules
3.3 The Working Memory
3.4 The Control Unit / Interpreter
3.5 Conflict Resolution Strategies
3.6 An Alternative Approach for Conflict Resolution
3.7 An Illustrative Production System
3.8 The RETE Match Algorithm
3.9 Types of Production Systems
 3.9.1 Commutative Production System
 3.9.2 Decomposable Production System
3.10 Forward versus Backward Production Systems
3.11 General Merits of a Production System
 3.11.1 Isolation of Knowledge and Control Strategy
 3.11.2 A Direct Mapping onto State-space
 3.11.3 Modular Structure of Production Rules
 3.11.4 Tracing of Explanation
3.12 Knowledge Base Optimization in a Production System
3.13 Conclusions
 Exercises
 References

Chapter 4: Problem Solving by Intelligent Search

4.1 Introduction
4.2 General Problem Solving Approaches
 4.2.1 Breadth First Search
 4.2.2 Depth First Search
 4.2.3 Iterative Deepening Search
 4.2.4 Hill Climbing
 4.2.5 Simulated Annealing
4.3 Heuristic Search
 4.3.1 Heuristic Search for OR Graphs
 4.3.2 Iterative Deepening A* Algorithm
 4.3.3 Heuristic Search on AND-OR Graphs
4.4 Adversary Search
 4.4.1 The MINIMAX Algorithm
 4.4.2 The Alpha-Beta Cutoff Procedure
4.5 Conclusions
 Exercises
 References

Chapter 5: The Logic of Propositions and Predicates

5.1 Introduction
5.2 Formal Definitions
5.3 Tautologies in Propositional Logic
5.4 Theorem Proving by Propositional Logic
 5.4.1 Semantic Method for Theorem Proving
5.4.2 Syntactic Methods for Theorem Proving
 5.4.2.1 Method of Substitution
 5.4.2.2 Theorem Proving by Using Wang’s Algorithm
5.5 Resolution in Propositional Logic
5.6 Soundness and Completeness of Propositional Logic
5.7 Predicate Logic
5.8 Writing a Sentence into Clause Forms
5.9 Unification of Predicates
5.10 Robinson’s Inference Rule
 5.10.1 Theorem Proving in FOL with Resolution Principle
5.11 Different Types of Resolution
 5.11.1 Unit Resulting Resolution
 5.11.2 Linear Resolution
 5.11.3 Double Resolution: A Common Mistake
5.12 Semi-decidability
5.13 Soundness and Completeness of Predicate Logic
5.14 Conclusions
 Exercises
 References

Chapter 6: Principles in Logic Programming

6.1 Introduction to PROLOG Programming
6.2 Logic Programs - A Formal Definition
6.3 A Scene Interpretation Program
6.4 Illustrating Backtracking by Flow of Satisfaction Diagrams
6.5 The SLD Resolution
6.6 Controlling Backtracking by CUT
 6.6.1 Risk of Using CUT
 6.6.2 CUT with FAIL Predicate
6.7 The NOT Predicate
6.8 Negation as a Failure in Extended Logic Programs
6.9 Fixed Points in Non-Horn Clause Based Programs
6.10 Constraint Logic Programming
6.11 Conclusions
 Exercises
 References

Chapter 7: Default and Non-Monotonic Reasoning

7.1 Introduction
7.2 Monotonic versus Non-Monotonic Logic
Chapter 8: Structured Approach to Knowledge Representation

8.1 Introduction
8.2 Semantic Nets
8.3 Inheritance in Semantic Nets
8.4 Manipulating Monotonic and Default Inheritance in Semantic Nets
8.5 Defeasible Reasoning in Semantic Nets
8.6 Frames
8.7 Inheritance in Tangled Frames
8.8 Petri Nets
8.9 Conceptual Dependency
8.10 Scripts
8.11 Conclusions
Exercises
References

Chapter 9: Dealing with Imprecision and Uncertainty

9.1 Introduction
9.2 Probabilistic Reasoning
 9.2.1 Bayesian Reasoning
 9.2.2 Pearl’s Scheme for Evidential Reasoning
 9.2.3 Pearl’s Belief Propagation Scheme on a Polytree
 9.2.4 Dempster-Shafer Theory for Uncertainty Management
9.3 Certainty Factor Based Reasoning
9.4 Fuzzy Reasoning
 9.4.1 Fuzzy Sets
 9.4.2 Fuzzy Relations
 9.4.3 Continuous Fuzzy Relational Systems
Chapter 10: Structured Approach to Fuzzy Reasoning

10.1 Introduction
10.2 Structural Model of FPN and Reachability Analysis
 10.2.1 Formation of FPN
 10.2.2 Reachability Analysis and Cycle Identification
10.3 Behavioral Model of FPN and Stability Analysis
 10.3.1 The Behavioral Model of FPN
 10.3.2 State Space Formulation of the Model
 10.3.3 Special Cases of the Model
 10.3.4 Stability Analysis
10.4 Forward Reasoning in FPN
10.5 Backward Reasoning in FPN
10.6 Bi-directional IFF Type Reasoning and Reciprocity
10.7 Fuzzy Modus Tollens and Duality
10.8 Non-monotonic Reasoning in a FPN
10.9 Conclusions
 Exercises
 References

Chapter 11: Reasoning with Space and Time

11.1 Introduction
11.2 Spatial Reasoning
11.3 Spatial Relationships among Components of an Object
11.4 Fuzzy Spatial Relationships among Objects
11.5 Temporal Reasoning by Situation Calculus
 11.5.1 Knowledge Representation and Reasoning in Situation Calculus
 11.5.2 The Frame Problem
 11.5.3 The Qualification Problem
11.6 Propositional Temporal Logic
 11.6.1 State Transition Diagram for PTL Interpretation
 11.6.2 The ‘Next-Time’ Operator
 11.6.3 Some Elementary Proofs in PTL
11.7 Interval Temporal Logic
11.8 Reasoning with Both Space and Time
11.9 Conclusions
Chapter 12: Intelligent Planning

12.1 Introduction
12.2 Planning with If-Add-Delete Operators
 12.2.1 Planning by Backward Reasoning
 12.2.2 Threatening of States
12.3 Least Commitment Planning
 12.3.1 Operator Sequence in Partially Ordered Plans
 12.3.2 Realizing Least Commitment Plans
12.4 Hierarchical Task Network Planning
12.5 Multi-agent Planning
12.6 The Flowshop Scheduling Problem
 12.6.1 The R-C Heuristics
12.7 Summary
 Exercises
 References

Chapter 13: Machine Learning Techniques

13.1 Introduction
13.2 Supervised Learning
 13.2.1 Inductive Learning
 13.2.1.1 Learning by Version Space
 The Candidate Elimination Algorithm
 The LEX System
 13.2.1.2 Learning by Decision Tree
 13.2.2 Analogical Learning
13.3 Unsupervised Learning
13.4 Reinforcement Learning
 13.4.1 Learning Automata
 13.4.2 Adaptive Dynamic programming
 13.4.3 Temporal Difference Learning
 13.4.4 Active Learning
 13.4.5 Q-Learning
13.5 Learning by Inductive Logic Programming
13.6 Computational Learning Theory
13.7 Summary
 Exercises
 References
Chapter 14: Machine Learning Using Neural Nets

14.1 Biological Neural Nets
14.2 Artificial Neural Nets
14.3 Topology of Artificial Neural Nets
14.4 Learning Using Neural Nets
 14.4.1 Supervised Learning
 14.4.2 Unsupervised Learning
 14.4.3 Reinforcement Learning
14.5 The Back-propagation Training Algorithm
14.6 Widrow-Hoff’s Multi-layered ADALINE Models
14.7 Hopfield Neural Net
 Binary Hopfield Net
 Continuous Hopfield Net
14.8 Associative Memory
14.9 Fuzzy Neural Nets
14.10 Self-Organizing Neural Net
14.11 Adaptive Resonance Theory (ART)
14.12 Applications of Artificial Neural Nets
 Exercises
 References

Chapter 15: Genetic Algorithms

15.1 Introduction
15.2 Deterministic Explanation of Holland’s Observation
15.3 Stochastic Explanation of GA
 The Fundamental Theorem of Genetic Algorithms
15.4 The Markov Model for Convergence Analysis
15.5 Application of GA in Optimization Problems
15.6 Application of GA in Machine Learning
 15.6.1 GA as an Alternative to Back-propagation Learning
 15.6.2 Adaptation of the Learning Rule / Control Law by GA
15.7 Applications of GA in Intelligent Search
 15.7.1 Navigational Planning for Robots
15.8 Genetic Programming
15.9 Conclusions
 Exercises
 References
Chapter 16: Realizing Cognition Using Fuzzy Neural Nets

16.1 Cognitive Maps
16.2 Learning by a Cognitive Map
16.3 The Recall in a Cognitive Map
16.4 Stability Analysis
16.5 Cognitive Learning with FPN
16.6 Applications in Autopilots
16.7 Generation of Control Commands by a Cognitive Map
 16.7.1 The Motor Model
 16.7.2 The Learning Model
 16.7.3 Evaluation of Input Excitation by Fuzzy Inverse
16.8 Task Planning and Co-ordination
16.9 Putting It All Together
16.10 Conclusions and Future Directions
 Exercises
 References

Chapter 17: Visual Perception

17.1 Introduction
 17.1.1 Digital Images
17.2 Low Level Vision
 17.2.1 Smoothing
 17.2.2 Finding Edges in an Image
 17.2.3 Texture of an Image
17.3 Medium Level Vision
 17.3.1 Segmentation of Images
 17.3.2 Labeling an Image
17.4 High Level Vision
 17.4.1 Object Recognition
 17.4.1.1 Face Recognition by Neurocomputing Approach
 Principal Component Analysis
 Self-organizing Neural Nets for Face Recognition
 17.4.1.2 Non-Neural Approaches for Image Recognition
 17.4.2 Interpretation of Scenes
 17.4.2.1 Perspective Projection
 17.4.2.2 Stereo Vision
 17.4.2.3 Minimal Representation of Geometric Primitives
 17.4.2.4 Kalman Filtering
 17.4.2.5 Construction of 2-D Lines from Noisy 2-D Points
 17.4.2.6 Construction of 3-D Points Using 2-D Image Points
 Exercises
 References
Chapter 18: Linguistic Perception

18.1 Introduction
18.2 Syntactic Analysis
 18.2.1 Parsing Using Context Free Grammar
 18.2.2 Transition Network Parsers
 18.2.3 Realizing Transition Networks with Artificial Neural Nets
 18.2.3.1 Learning
 18.2.3.2 Recognition
 18.2.4 Context Sensitive Grammar
18.3 Augmented Transition Network Parsers
18.4 Semantic Interpretation by Case Grammar and Type Hierarchy
18.5 Discourse and Pragmatic Analysis
18.6 Applications of Natural Language Understanding
 Exercises
 References

Chapter 19: Problem Solving by Constraint Satisfaction

19.1 Introduction
19.2 Formal Definitions
19.3 Constraint Propagation in Networks
19.4 Determining Satisfiability of CSP
19.5 Constraint Logic Programming
19.6 Geometric Constraint Satisfaction
19.7 Conclusions
 Exercises
 References

Chapter 20: Acquisition of Knowledge

20.1 Introduction
20.2 Manual Approach for Knowledge Acquisition
20.3 Knowledge Fusion from Multiple Experts
 20.3.1 Constructing MEID from IDs
20.4 Machine Learning Approach to Knowledge Acquisition
Chapter 22: Parallelism at Knowledge Representational Level

22.4.1 Parallelism in Production Systems
22.4.2 Parallelism in Logic Programs
 - AND-parallelism
 - OR-parallelism
 - Stream Parallelism
 - Unification Parallelism

Chapter 22: Parallel Architecture for Logic Programming

22.5.1 The Extended Petri Net Model
22.5.2 Forward and Backward Firing
22.5.3 Possible Parallelisms in Petri Net Models
22.5.4 An Algorithm for Automated Reasoning
22.5.5 The Modular Architecture of the Overall System
22.5.6 The Time Estimate

Chapter 23: Case Study I: Building a System for Criminal Investigation

23.1 An Overview of the Proposed Scheme
23.2 Introduction to Image Matching
 23.2.1 Image Features and Their Membership Distributions
 23.2.2 Fuzzy Moment Descriptors
 23.2.3 Image Matching Algorithm
 23.2.4 Rotation and Size Invariant Matching
 23.2.5 Computer Simulation
 23.2.6 Implications of the Results of Image Matching
23.3 Fingerprint Classification and Matching
 23.3.1 Features Used for Classification
 23.3.2 Classification Based on Singular Points
23.4 Identification of the Suspects from Voice
 23.4.1 Extraction of Speech Features
 23.4.2 Training a Multi-layered Neural Net for Speaker Recognition
23.5 Identification of the Suspects from Incidental Descriptions
 23.5.1 The Database
 23.5.2 The Data-tree
 23.5.3 The Knowledge Base
 23.5.4 The Inference Engine
 23.5.5 Belief Revision and Limitcycles Elimination
 23.5.6 Non-monotonic Reasoning in a FPN
 23.5.7 Algorithm for Non-monotonic Reasoning in a FPN
Chapter 24: Case Study II: Realization of Cognition for Mobile Robots

24.1 Mobile Robots
24.2 Scope of Realization of Cognition on Mobile Robots
24.3 Knowing the Robot’s World
24.4 Types of Navigational Planning Problems
24.5 Offline Planning by Generalized Voronoi Diagram (GVD)
24.6 Path Traversal Optimization Problem
 24.6.1 The Quadtree Approach
 24.6.2 The GA-based Approach
 24.6.3 Proposed GA-based Algorithm for Path Planning
24.7 Self-Organizing Map (SOM)
24.8 Online Navigation by Modular Back-propagation Neural Nets
24.9 Co-ordination among Sub-modules in a Mobile Robot
 24.9.1 Finite State Machine
 24.9.2 Co-ordination by Timed Petri Net Model
24.10 An Application in a Soccer Playing Robot

Chapter 24*: The Expectations from the Readers

Appendix A: How to Run the Sample Programs?

Appendix B: Derivation of the Back-propagation Algorithm

Appendix C: Proof of the Theorems of Chapter 10