Contents

Sections marked with an asterisk may be skipped on a first reading.

The photosynthetic reaction centre: protein structure in a microcosm 1

The reaction centre from Rhodopseudomonas viridis 3

Conclusions 12

Recommended reading and references 12

Exercises and problems 13

2 In vivo, in vitro, in silicio 15

Why study proteins? 15

Genomics 15

Protein structure and conformation 19

The amino acids 21

The amino acids vary in size, hydrogen-bonding potential, and charge 21

Protein folding 22

Protein folding pathways 23

Protein structures depend on a variety of chemical forces for their stability and for their affinity and specificity for ligands 23

Conformation of the polypeptide chain 31

The Sasisekharan-Ramakrishnan-Ramachandran diagram 32

Sidechain conformation 35

The known protein structures 36

Protein structure historically considered 36

Methods of structure determination 37

X-ray crystallography 37

Model building and refinement 38

How accurate are the structures? 39

Measures of structural quality 40

Nuclear Magnetic Resonance 40

Low-temperature electron microscopy (cryo-EM) 42

The Protein Data Bank 42

The World Wide Web 43

Data banks for molecular biology 44

Archival data banks 45

Specialized data banks 45

Information-retrieval tools 45

Summary 47

Glossary 49

Useful web sites 50

Recommended reading and references 51

Exercises, problems and weblems 53

3 Pattern and form in protein structure 59

Helices and sheets 59

Hydrogen-bonding patterns of helices and sheets 59

Hydrogen-bonding patterns in sheets 68

CONTENTS

The β bulge 70 β-barrels 70

The hierarchical nature of protein architecture 70

Assignment of helices and sheets 78

An album of small structures 80

Classification of protein structures 84

Comparisons of protein sequences and structures 85

Classification of protein topologies 89

Protein structure prediction 90

Structural interpretation of genome information 94

Loops 95

Sequence-structure relationships in short β hairpins 96 Sequence-structure relationships in two-residue β hairpins 97 Structural determinants of medium-sized loops 98

Protein-ligand interactions 103

Water molecules 110

Useful web sites 111

Recommended reading and references 111

Exercises, problems and weblems 112

4 The varieties of protein structure 127

Catalogues of protein structure 127

SCOP 127

CATH 129

FSSP, and the DALI domain dictionary 131

The known structures 132

α-helical proteins 132

Principles of the architecture of α-helical proteins 135*

Complete enumeration within restricted classes of folds 135*

Geometry: the polyhedral model of α-helical globular proteins 140* Structural chemistry: tertiary-structural interactions 141*

The structure of helix-helix packings 141*

β-sheet proteins 143

β-sheet 'sandwiches' 145

Other B-sheet proteins 147

 α + β proteins 147

 α / β proteins 151

The β - α - β unit 151

Linear or open β - α - β proteins 151

Closed β-α-β barrel structures 152

The TIM barrel 152

Other \(\beta\)-barrel structures \(158\)

Irregular structures 158

Conclusions 160

Useful web sites 160

Recommended reading and references 160

Exercises, problems and weblems 161

5 Molecular evolution 165

Evolution of DNA and proteins 165

CONTENTS xi

Direct access to the genome—nucleotide sequences 166

Evolutionary changes in protein sequences 166

Variability in selective constraints in protein molecules 171

Evolution of protein structures 172

The evolution of proteins with altered function 173

Neutral mutations 174

Domain combination and recombination 175

Structural relationships among related molecules 176

A general relationship between divergence of amino acid sequence and protein conformation in families of related proteins 176

Point mutations 182

Closely related and distantly related proteins 183

Application to homology modelling 185

Useful web sites 186

Recommended reading and references 186

Exercises, problems and weblems 186

Evolution in selected protein families 195

Evolution of the globins 195

Phycocyanin and the globins 200*

Evolution of serine proteinases of the chymotrypsin family 204

The structure of serine proteinases of the chymotrypsin family 207

Structures of individual domains 207

The domain-domain interface 210

The specificity pocket 211

The β -barrels in serine proteinase domains and the packing of residues in their interiors 213*

Conclusions 217

NAD-binding domains of dehydrogenases 217

The sequence motif G*G**G 218

Comparison of NAD-binding domains of dehydrogenases 219

Cofactor binding 224

Binding of NAD vs NADP 224

Conclusion 226

Useful web sites 226

Recommended reading and references 226

Exercises, problems and weblems 227

Some proteins of the immune system 229

Antibody structure 229

The structures of immunoglobulins 231

The antigen-binding site 236

Somatic mutation and the maturation of the antibody response 237

Canonical structures of antigen-binding loops of antibodies 240

Greater variability in the H3 loop 240

Conclusions: how does the immune system generate and then refine molecules of such a wide range of specificity? 246

Sequence 246

Structure 247

Proteins of the Major Histocompatibility Complex 247

Structures of MHC proteins 249

xii CONTENTS

Specificities of the MHC system 254

Class I and class II MHC proteins function in parallel, selecting different immune responses to extracellular and intracellular pathogens 255

Peptide binding 255

Conclusion 260

T-cell receptors 261

Canonical structures for TCR binding loops 262

The TCR-MHC-peptide complex 263

Useful web sites 266

Recommended reading and references 266

Exercises, problems and weblems 267

8 Conformational changes in proteins 271

Structural changes arising from change in state of ligation 271 Sperm whale myoglobin 271

Hinge motions in proteins 274

Hinge motion in lactoferrin 274

Hinge motion in myosin 274

The 'helix interface shear' mechanism of

conformational change 277

Insulin 277

How are these movements accommodated: why does the close-packing of interfaces between packed helices not hinder them severely? 281

Citrate synthase 281

The allosteric change in haemoglobin 284

Structural differences between deoxy- and oxyhaemoglobin 286

Tertiary structural change between deoxy- and oxyhaemoglobin 286

Intersubunit interactions in haemoglobin 287

Serpins: SERine Proteinase INhibitors 290

Structural states of serpins 291

Different folding topologies in one protein family 292

Mechanism of the S→R transition 295

Higher-level structural changes 297

The GroEL-GroES chaperonin complex 297

The GroEL-GroES conformational change 299

Operational cycle 299

ATPase 302

Useful web sites 305

Recommended reading and references 305

Exercises and problems 306

Appendix 1. An album for browsing 309

Appendix 2. Useful web sites 335

Index of structures illustrated 341 Subject index 345