CONTENTS

Chapter 1:		Structure and Evolution of AdoMet-Dependent Methyltransferases		
		Eric B. Fauman, Robert M. Blumenthal and		
		Xiaodong Cheng		
1.	Intro	duction: chemistry of AdoMet-dependent methyltransfer	1	
	1.1	AdoMet is a very commonly-used cofactor	1	
	1.2	Various types of AdoMet-dependent methylation	3	
	1.3	Chemistry of methylating different atoms	ϵ	
2.	A co	mmon architecture for AdoMet-dependent MTases	8	
	2.1	Almost all examples solved to date share a common core	8	
	2.2	AdoMet binding	15	
	2.3	Conserved amino acid sequence motifs	17	
3.	A re	ationship between the AdoMet-dependent MTases and the	20	
	Ross	mann fold proteins		
	3.1	The overall architecture of AdoMet-dependent MTases is strikingly	y 20	
		similar to that of the eight known families of Rossmann fold prote	ins	
	3.2	The positions of the adenosine moieties of Rossmann fold proteins	s 21	
		are exactly analogous to the positions of the AdoMet adenosine		
		moieties in the MTases		
	3.3	Catalytically-active sidechains occupy some analogous and	23	
		some distinct positions in AdoMet-dependent MTases and		
		Rossmann fold proteins		
	3.4	Did the MTases arise from gene duplication?	24	
4.	Clas	sification of MTases: overall sequence similarity vs. motif order	25	
	4.1	Structure-guided alignments reveal a low degree of overall	25	
		sequence conservation		
	4.2	Variation in linear motif order among MTases	25	
5.	Does	s the structural conservation among AdoMet-dependent MTases	27	
	refle	ct divergent or convergent evolution?		
	5.1	Criteria for distinguishing divergent from convergent evolution	27	
	5.2	Divergence of the β family of DNA MTases might be explained by	, 29	
		derivation from a circularly-permuted RNA MTase		

7.		nowle	ons and future work edgements	30 30 32	
Chapter 2:		r 2:	The Black Sheep of the Family: AdoMet-Dependent Methyltransferases that do not Fit the Consensus Structural Fold Melinda M. Dixon, Eric Fauman and Martha L. Ludwig		
1.	Intro	ducti	on	39	
2.			ion domain of cobalamin-dependent methionine (MetH)	40	
	2.1		e of the MetH reactivation domain	40	
	2.2		cture of MetH reactivation domain	43	
	2.3		formation and interactions of AdoMet in the MetH tivation domain	44	
	2.4	Read	ction with the cobalamin-binding domain	45	
3.	Prec	orrin	MTase CbiF	46	
	3.1	Role	e of CbiF	46	
	3.2	Stru	cture of CbiF	46	
	3.3	Inte	ractions and conformation of AdoHcy bound to CbiF	48	
4.	Ado	Met/	AdoHcy binding in catechol-O-MTase, MetH and CbiF	50	
5.	Pers	pectiv	/es	51	
6.	Ack	nowle	edgements	52	
Ref	erenc	es		52	
Ch	apte	r 3:	Catechol O-Methyltransferase	55	
			Jukka Vidgren, Martti Ovaska, Jukka Tenhunen,		
			Carola Tilgmann, Timo Lotta and Pekka T. Männistö		
1.	Intro	ducti	on	55	
2.	S-C	TMC	ase and MB-COMTase enzyme forms	56	
3.	Dist	ributi	on of COMTase proteins in mammalian tissues	57	
4.	Sub	ellul	ar localization of COMTase proteins	58	
5.	COM		e gene	60	
	5.1		cture of COMTase gene	60	
	5.2	Reg	ulation of COMTase expression	61	
	5.3	Gen	etic polymorphism of human COMTase	61	

Chapter 5:		5: A Protein Carboxyl Methyltransferase that	123
Ompros of		Recognizes Age-Damaged Peptides and	
		Proteins and Participates in their Repair	
		Steven Clarke	
		Sieven Garne	
1.	Introd	luction	123
2.	Distri	bution of the L-isoaspartyl MTase in nature	124
		ture of the L-isoaspartyl MTases	127
		Genes specifying L-isoaspartyl MTases	127
		Diversity of mammalian enzymes due to alternative splicing of	128
		transcripts and gene polymorphisms	
		Enzyme structure and localization	129
		Availability of purified enzymes	129
		Three-dimensional structural studies	129
4.		rate specificity of the MTase	131
		Are some proteins more prone to isomerization and	132
		racemization than others?	
	4.2	Alternative sources of L-isoaspartate residues in proteins	132
5.		ir pathways	134
	•	Repair of D-aspartate residues?	134
		Repair of extracellular proteins?	134
		Self-repair of L-isoaspartyl MTase	135
	5.4	Defective repair in human diseases	135
		A role for repair in proteolysis?	135
6.		knockout model systems for studying the physiological role of	136
		-isoaspartyl MTase	
		Bacteria	136
	6.2	Yeast	137
	6.3	Worms	137
	6.4	Flies	138
	6.5	Amphibians	138
		Mice	138
	6.7	Plants	139
7.	Futur	e work	139
		owledgements	139
	ference		140

193

Chapter (6: Protein Methyltransferases Involved in Signal Transduction	149
	Snezana Djordjevic, Ann M. Stock, Ying Chen and	
	Jeffry B. Stock	
1. Introdu	action	149
	al Receptor MTases	150
	Receptor methylation	150
	tructure of MTase CheR	152
2.3 N	ATase-receptor interactions	154
	equence analysis	159
3. Prenyl	cysteine MTases	160
	CAAX-tail processing	160
3.2 E	Enzymology of the prenylcysteine methylation system	162
3.3 P	renylcysteine MTase substrates and inhibitors	165
3.4 F	function of prenylcysteine methylation	165
4. Phospi	noprotein phosphatase 2A MTases	166
4.1 F	hosphoprotein phosphatase 2A	166
4.2 F	PP2A MTase	167
4.3 F	P2A methylesterase	168
5. Protein	arginine MTases	168
5.1 A	Arginine methylation	168
5.2	nvolvement in signaling	170
5.3 S	Sequence analysis	172
6. Ackno	wledgements	172
References		173
Chapter '	•	185
	Walter M. Holmes	
1. Introd	action	185
2. Biolog	ical function	185
3. Classe	s of enzyme	186
3.1 t	RNA 5mU54 MTase (RUMT)	187
3.2 t	RNA N1mG MTase (IMGT)	189
3.3 t	RNA mG18 2'-O-MTase	192
3.4 t	RNA 5mC MTase	192
3.5 t	RNA N1mA58 MTase	193

3.6 tRNA N2,2mG26 MTase

4. Summary and Conclusions References			
Ch	apter	8: rRNA Methyltransferases (ErmC' and ErmAM) and Antibiotic Resistance Cele Abad-Zapatero, Ping Zhong, Dirksen E. Bussiere, Kent Steward and Steven W. Muchmore	199
1.	Introd	luction	199
2.	MTas	es involved in rRNA processing and maturation	201
		General considerations about rRNA MTases	201
	2.2	rRNA MTases modifying ribose sugars	202
	2.3	rRNA MTases modifying nucleotide bases	203
3.	rRNA	MTases involved in antibiotic resistance	204
	3.1	General considerations	204
	3.2	Macrolide-Lincosamide and streptogramin-B resistance: Erm rRNA MTases	205
	3.3	Structures of ErmC' and ErmAM	206
	3.4	Consensus structure of the Erm family of rRNA MTases	208
	3.5	Structural relation to N6mA DNA MTases	208
	3.6	AdoMet binding	210
	3.7	rRNA recognition	211
4.	Struc	ture-guided amino acid sequence comparisons among	214
	rRNA	MTases	
		tRNA MTases	217
5.	Conc	lusions and future work	218
6.	Ackn	owledgements	218
Ref	erence	es	218
Ch	apter	HeLa mRNA (N6-Adenosine)-Methyltransferase	227
		Joseph A. Bokar and Fritz M. Rottman	
1.	Introd	luction	227
2.		ylated nucleosides present in eukaryotic mRNA — the 5'-terminal	227
	2.1	Biological function of methylated nucleosides within the	228
		cap structure Enzymes involved in cap methylation	228

3.	Mod	ified nucleosides at internal positions in cukaryotic mRNA	229
	3.1	N6mA	230
	3.2	Sequence specific distribution of N6mA in vivo	231
	3.3	Function of N6mA in mRNA	232
	3.4	Mutation of N6mA sites	232
	3.5	Studies utilizing methylation inhibitors	233
4.	Cha	racterization and purification of HeLa mRNA N6mA MTase	235
	4.1	Sequence specificity in vitro	235
	4.2	Purification of HeLa mRNA N6mA MTase	237
	4.3	Purification and cDNA cloning of the AdoMet-binding subunit	238
	4.4	GenBank and Expressed Sequence Tag (EST) database	238
		homology searches	
	4.5	Northern blot analysis of MT-A70 expression	244
	4.6	Subnuclear localization of MT-A70 in HeLa Cells	245
	4.7	Further characterization of MT-B	246
5.	Con	clusion	247
Ref	eren	ces	247
Ch	apte	r 10: VP39 — An mRNA Cap-Specific	255
	•	2'-O-Methyltransferase	
		Alec E. Hodel, Florante A. Quiocho and	
		Paul D. Gershon	
1.	Intro	oduction	255
	1.1	mRNA biogenesis: outline of terminal processing steps	255
	1.2	Vaccinia as an enzymological tool	256
	1.3	Vaccinia protein VP39 — a nucleic acid ribose MTasc and	256
		a poly(A) polymerase processivity factor	
2.	VP3	9 overall architecture and evolution	257
	2.1	Architecture	257
	2.2	Relationship to other AdoMet-dependent MTases	258
3.	Cof	actor	259
	3.1	AdoMet binding mutants	259
	3.2	VP39-AdoMet interactions	261
	3.3	AdoMet-binding mutant phenotypes in a structural context	262
4.	N7r	nG molety of the mRNA cap	262
	4.1	Specificity	262
	4.2	Cap-dependent RNA binding assay based on surface	263

plasmon resonance

	4.3	N7mG-binding pocket	264
	4.4	VP39-N7mG interactions	264
	4.5	Reconciling the mutagenesis and crystallography	265
	4.6	How does VP39 discriminate 7-methylated from unmethylated G?	266
	4.7	How might the Y22/F180 stacking sandwich favor 7-methylated	268
		over unmethylated G?	
	4.8	By what biophysical mechanism might the positively charged	268
		N7mG base enhance stacking?	
	4.9	Adenine-cap binding to the N7mG pocket in the context of	269
		capped RNA	
	4,10	Hydrogen-bonding to N7mG	269
5.	MTa	se-specific VP39-RNA interactions: A four-site model for	270
	VP3	9-substrate interaction	
	5.1	Downstream RNA-binding cleft	270
	5.2	VP39-phosphoribose backbone interactions within minimal	272
		MTase substrates	
	5.3	pH-dependent binding of the first RNA trimer	273
	5.4	A distal downstream RNA-binding site?	275
6.	Basi	c enzymology and possible catalytic mechanism	275
7.	Inter	action between VP39's two functions	277
8.	Conc	clusions and future work	278
Ref	егепс	es	279
Ch	apte	r 11: Bacterial DNA Methyltransferases	283
		David T. F. Dryden	
			200
1.		duction	283
	1.1	The DNA MTases	283
	1.2	Base flipping	283
_	1.3	Scope of this chapter	284 285
Ż.		ogy of DNA MTases	
	2.1	Dam and Dcm MTases	285 286
	2.2	R/M systems Antirestriction MTases	287
2		Antirestriction Masses	288
₽.	3.1		288
	3.2	Target recognition domains (TRDs) AdoMet binding and catalytic domain	200 291
	3.3	Other domain structures	291
	ر.ر	Onici aolitani galaciares	49.

		3.3.1 Endonuclease DNA cleavage domains	292
		3.3.2 DNA helicase domains	293
4.	Class	sification of DNA MTases	295
	4.1	Type II R/M systems	295
	4.2	Type IIs R/M systems	296
	4.3	Multifunctional MTases	296
		4.3.1 Type I R/M system	296
		4.3.1.1 Specificity (S) subunits	29
		4.3.1.2 Modification (M) subunits	300
		4.3.1.3 Restriction (R) subunits	301
		4.3.2 Type I 1/2 R/M systems	302
		4.3.3 BcgI-like R/M systems	302
		4.3.4 Type III R/M systems	303
		4.3.5 Type IV R/M systems	304
	4.4	Assembly of DNA MTases	30:
5.	Cher	nical reactions of DNA MTases	300
	5.1	₹	306
	5.2	N4mC and N6mA methylation	308
	5.3	Kinetics of DNA methylation	309
6.	Phys	ical mechanism	310
	6.1	Locating the DNA target sequence	310
	6.2	DNA binding affinity	31
	6.3	DNA footprinting	313
		6.3.1 Type II MTases	313
		6.3.2 DNA bending by type II MTases	313
		6.3.3 Footprinting of type I R/M enzymes	314
	6.4	Substrate-induced conformational changes in DNA MTases	314
		6.4.1 Crystallographic evidence	314
		6.4.2 Limited proteolysis of MTases	315
		6.4.3 Spectroscopic methods	310
		6.4.4 Hydrodynamic measurements	310
	6.5	Conformational changes in the DNA and nucleotide	31
		base flipping	
	6.6	Mechanism of EcoRI N6mA MTase	319
	Sum	•	319
8.	Ack	nowledgements	32
Ref	erenc	res	32

Chapter 12: Eukaryotic DNA Methyltransferases			
	Paula M. Vertino		
1.	Introduction	341	
2.	Establishment of genome methylation patterns	341	
	B. Enzymology of Eukaryotic MTases		
	Eukaryotic DNA MTase familes	343 345	
	Dnmt1 family MTases	349	
	5.1 Substrate selectivity	351	
	5.2 Dnmt1: single gene or multigene family?	353	
	5.3 Maintenance methylation and DNA replication	354	
	5.4 De novo methylation by Dnmt1	356	
6.	Dnmt2 family MTases	357	
	6.1 Yeast DNA MTases?: pmt1	358	
7.	Masc-1 family DNA MTases	359	
8.	Dnmt3 family MTases	359	
9.	MTases and chromatin structure: TrxG/PcG proteins, methylated DNA binding proteins and chromomethylases	360	
10.	Conclusion	361	
11,	Acknowledgements	362	
Ref	erences	362	
Ch	apter 13: Mechanisms of DNA Demethylation in Vertebrates	373	
	Jean-Pierre Jost, Edward J. Oakeley and		
	Steffen Schwarz		
1.	Introduction	373	
2.	DNA methylation/demethylation and the formation of	374	
	methylation patterns		
3.	Passive demethylation	375	
	3.1 Natural inhibitors of DNA MTase	376	
	3.2 Nucleotide analogs as inhibitors of DNA methylation	376	
	3.3 Passive demethylation by drugs influencing the level of AdoMet	377	
4.	Active demethylation	378	
	4.1 Indirect evidence for the presence of an active DNA demethylation system	378	
	4.2 Direct evidence for active DNA demethylation	379	
	4.3 5mC-DNA glycosylase	380	

			Contents	xvii
	4 .4	The activity of 5mC-DNA glycosylase requires both protein and RNA		381
	4.5	RNA alone is causing DNA demethylation		382
5.	Cis-	trans regulatory elements of DNA demethylation		383
6.	Sequ	nence of events leading to site specific demethylation of the		384
	avia	n vitellogenin gene		
7.	Con	clusions and future work		385
8.	Ack	nowledgements		385
Ref	erend	ees		385
Ap;	Appendix I			393
Αp	pendi	x Jl		398